{"id":438687,"date":"2017-11-08T08:05:19","date_gmt":"2017-11-08T16:05:19","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=438687"},"modified":"2018-10-16T22:29:04","modified_gmt":"2018-10-17T05:29:04","slug":"black-box-concurrent-data-structures-numa-architectures-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/black-box-concurrent-data-structures-numa-architectures-2\/","title":{"rendered":"Black-box Concurrent Data Structures for NUMA Architectures"},"content":{"rendered":"

High-performance servers are non-uniform memory access (NUMA) machines. To fully leverage these machines, programmers need efficient concurrent data structures that are aware of the NUMA performance artifacts. We propose Node Replication (NR), a black-box approach to obtaining such data structures. NR takes an arbitrary sequential data structure and automatically transforms it into a NUMA-aware concurrent data structure satisfying linearizability. Using NR requires no expertise in concurrent data structure design, and the result is free of concurrency bugs. NR draws ideas from two disciplines: shared-memory algorithms and distributed systems. Briefly, NR implements a NUMA-aware shared log, and then uses the log to replicate data structures consistently across NUMA nodes. NR is best suited for contended data structures, where it can outperform lock-free algorithms by 3.1x, and lock-based solutions by 30x. To show the benefits of NR to a real application, we apply NR to the data structures of Redis, an in-memory storage system. The result outperforms other methods by up to 14x. The cost of NR is additional memory for its log and replicas.<\/p>\n","protected":false},"excerpt":{"rendered":"

High-performance servers are non-uniform memory access (NUMA) machines. To fully leverage these machines, programmers need efficient concurrent data structures that are aware of the NUMA performance artifacts. We propose Node Replication (NR), a black-box approach to obtaining such data structures. NR takes an arbitrary sequential data structure and automatically transforms it into a NUMA-aware concurrent […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13552,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-438687","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-hardware-devices","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of 22nd ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)","msr_affiliation":"","msr_published_date":"2017-04-08","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Best Paper Award","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/sidsen.azurewebsites.net\/\/papers\/nr-asplos17.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/sidsen.azurewebsites.net\/\/papers\/nr-asplos17.pdf","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/sidsen.azurewebsites.net\/\/papers\/nr-asplos17.pdf"}],"msr-author-ordering":[{"type":"text","value":"Irina Calciu","user_id":0,"rest_url":false},{"type":"edited_text","value":"Siddhartha Sen","user_id":33656,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Siddhartha Sen"},{"type":"text","value":"Mahesh Balakrishnan","user_id":0,"rest_url":false},{"type":"text","value":"Marcos K. Aguilera","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438687"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438687\/revisions"}],"predecessor-version":[{"id":438735,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438687\/revisions\/438735"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=438687"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=438687"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=438687"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=438687"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=438687"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=438687"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=438687"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=438687"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=438687"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=438687"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=438687"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=438687"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=438687"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=438687"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=438687"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=438687"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}