{"id":443193,"date":"2017-11-28T10:16:09","date_gmt":"2017-11-28T18:16:09","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=443193"},"modified":"2018-10-16T20:02:51","modified_gmt":"2018-10-17T03:02:51","slug":"nastia-negotiating-appointment-setting-interface-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/nastia-negotiating-appointment-setting-interface-2\/","title":{"rendered":"NASTIA: Negotiating Appointment Setting Interface"},"content":{"rendered":"

This paper describes a French Spoken Dialogue System (SDS) named NASTIA (Negotiating Appointment SeTting InterfAce). Appointment scheduling is a hybrid task halfway between slot-filling and negotiation. NASTIA implements three different negotiation strategies. These strategies were tested on 1734 dialogues with 385 users who interacted at most 5 times with the SDS and gave a rating on a scale of 1 to 10 for each dialogue. Previous appointment scheduling systems were evaluated with the same experimental protocol. NASTIA is different from these systems in that it can adapt its strategy during the dialogue. The highest system task completion rate with these systems was 81\\% whereas NASTIA had an 88\\% average and its best performing strategy even reached 92\\%. This strategy also significantly outperformed previous systems in terms of overall user rating with an average of 8.28 against 7.40. The experiment also enabled highlighting global recommendations for building spoken dialogue systems.<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper describes a French Spoken Dialogue System (SDS) named NASTIA (Negotiating Appointment SeTting InterfAce). Appointment scheduling is a hybrid task halfway between slot-filling and negotiation. NASTIA implements three different negotiation strategies. These strategies were tested on 1734 dialogues with 385 users who interacted at most 5 times with the SDS and gave a rating […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-443193","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of LREC","msr_affiliation":"","msr_published_date":"2014-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/www.lrec-conf.org\/proceedings\/lrec2014\/pdf\/575_Paper.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/www.lrec-conf.org\/proceedings\/lrec2014\/pdf\/575_Paper.pdf","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/www.lrec-conf.org\/proceedings\/lrec2014\/pdf\/575_Paper.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"laelasri","user_id":37134,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=laelasri"},{"type":"text","value":"Remi Lemonnier","user_id":0,"rest_url":false},{"type":"edited_text","value":"Romain Laroche (rolaroch)","user_id":36623,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Romain Laroche (rolaroch)"},{"type":"text","value":"Olivier Pietquin","user_id":0,"rest_url":false},{"type":"text","value":"Hatim Khouzaimi","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[437514],"msr_event":[],"msr_group":[663258],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/443193"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/443193\/revisions"}],"predecessor-version":[{"id":450609,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/443193\/revisions\/450609"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=443193"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=443193"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=443193"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=443193"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=443193"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=443193"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=443193"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=443193"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=443193"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=443193"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=443193"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=443193"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=443193"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=443193"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=443193"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=443193"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}