{"id":445512,"date":"2017-12-01T07:12:58","date_gmt":"2017-12-01T15:12:58","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=445512"},"modified":"2018-10-16T20:06:25","modified_gmt":"2018-10-17T03:06:25","slug":"iterative-alternating-neural-attention-for-machine-reading","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/iterative-alternating-neural-attention-for-machine-reading\/","title":{"rendered":"Iterative Alternating Neural Attention for Machine Reading"},"content":{"rendered":"
We propose a novel neural attention architecture to tackle machine comprehension tasks, such as answering Cloze-style queries with respect to a document. Unlike previous models, we do not collapse the query into a single vector, instead we deploy an iterative alternating attention mechanism that allows a fine-grained exploration of both the query and the document. Our model outperforms state-of-the-art baselines in standard machine comprehension benchmarks such as CNN news articles and the Children’s Book Test (CBT) dataset.<\/p>\n","protected":false},"excerpt":{"rendered":"
We propose a novel neural attention architecture to tackle machine comprehension tasks, such as answering Cloze-style queries with respect to a document. Unlike previous models, we do not collapse the query into a single vector, instead we deploy an iterative alternating attention mechanism that allows a fine-grained exploration of both the query and the document. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193726],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-445512","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2016-06-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1606.02245","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"https:\/\/arxiv.org\/abs\/1606.02245","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1606.02245"}],"msr-author-ordering":[{"type":"text","value":"Alessandro Sordoni","user_id":0,"rest_url":false},{"type":"text","value":"Philip Bachman","user_id":0,"rest_url":false},{"type":"user_nicename","value":"adtrisch","user_id":37143,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adtrisch"},{"type":"text","value":"Yoshua Bengio","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[437514],"msr_event":[],"msr_group":[],"msr_project":[592723],"publication":[],"video":[],"download":[],"msr_publication_type":"unpublished","related_content":{"projects":[{"ID":592723,"post_title":"Machine Reading Comprehension","post_name":"machine-reading-comprehension","post_type":"msr-project","post_date":"2019-07-09 08:41:21","post_modified":"2020-11-12 13:44:24","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/machine-reading-comprehension\/","post_excerpt":"Machine Reading Comprehension (MRC) is a growing field of research, due to its potential in various enterprise applications, as well as the availability of MRC benchmarking datasets.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/592723"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/445512"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/445512\/revisions"}],"predecessor-version":[{"id":445515,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/445512\/revisions\/445515"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=445512"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=445512"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=445512"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=445512"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=445512"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=445512"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=445512"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=445512"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=445512"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=445512"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=445512"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=445512"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=445512"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=445512"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=445512"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=445512"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}