{"id":454383,"date":"2018-02-14T13:25:37","date_gmt":"2018-02-14T21:25:37","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=454383"},"modified":"2018-10-24T14:21:59","modified_gmt":"2018-10-24T21:21:59","slug":"machine-learning-placement-insensitive-inertial-motion-capture","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/machine-learning-placement-insensitive-inertial-motion-capture\/","title":{"rendered":"Machine Learning for Placement-insensitive Inertial Motion Capture"},"content":{"rendered":"

Although existing inertial motion-capture systems work reasonably well (less than 10 degree error in Euler angles), their accuracy suffers when sensor positions change relative to the associated body segments (+\/1 60 degree mean error and 120 degree standard deviation). We attribute this performance degradation to undermined calibration values, sensor movement latency and displacement offsets. The latter specifically leads to incongruent rotation matrices in kinematic algorithms that rely on homogeneous transformations. To overcome these limitations, we propose to employ machine-learning techniques. In particular, we use multi-layer perceptrons to learn sensor-displacement patterns based on 3 hours of motion data collected from 12 test subjects in the lab over 215 trials. Furthermore, to compensate for calibration and latency errors, we directly process sensor data with deep neural networks and estimate the joint angles. Based on these approaches, we demonstrate up to 69% reduction in tracking errors.<\/p>\n","protected":false},"excerpt":{"rendered":"

Although existing inertial motion-capture systems work reasonably well (less than 10 degree error in Euler angles), their accuracy suffers when sensor positions change relative to the associated body segments (+\/1 60 degree mean error and 120 degree standard deviation). We attribute this performance degradation to undermined calibration values, sensor movement latency and displacement offsets. The […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062,13551,13552,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-454383","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-graphics-and-multimedia","msr-research-area-hardware-devices","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-5-24","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"489167","msr_publicationurl":"https:\/\/icra2018.org\/","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/02\/XiaoZarar_ICRA_2018.pdf","id":"489167","title":"XiaoZarar_ICRA_2018","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/icra2018.org\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/icra2018.org\/"}],"msr-author-ordering":[{"type":"text","value":"Xuesu Xiao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Shuayb Zarar","user_id":36563,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shuayb Zarar"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144923],"msr_project":[430830],"publication":[],"video":[],"download":[431598],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":430830,"post_title":"Pose Tracking with Wearable and Ambient Devices","post_name":"wearable-devices","post_type":"msr-project","post_date":"2017-10-05 10:45:45","post_modified":"2020-06-12 11:20:27","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/wearable-devices\/","post_excerpt":"Summary Analyzing human motion with high autonomy\u00a0requires advanced capabilities in sensing, communication, energy management and AI. Wearable systems help us go beyond external cameras enabling motion analysis in the wild. However, such systems are still semi-autonomous. This is because, they require careful sensor calibration and precise positioning on the body over the course of motion.\u00a0Moreover, these systems are plagued with bulky batteries and issues of time synchronization, sensor noise and drift.\u00a0All of these restrictions hinder…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/430830"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/454383"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/454383\/revisions"}],"predecessor-version":[{"id":477429,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/454383\/revisions\/477429"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=454383"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=454383"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=454383"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=454383"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=454383"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=454383"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=454383"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=454383"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=454383"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=454383"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=454383"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=454383"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=454383"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=454383"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=454383"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=454383"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}