{"id":470010,"date":"2018-02-27T12:50:24","date_gmt":"2018-02-27T20:50:24","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=470010"},"modified":"2018-10-16T22:29:16","modified_gmt":"2018-10-17T05:29:16","slug":"language-model-based-arabic-word-segmentation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/language-model-based-arabic-word-segmentation\/","title":{"rendered":"Language model based Arabic word segmentation"},"content":{"rendered":"

We approximate Arabic’s rich morphology by a model that a word consists of a sequence of morphemes in the pattern prefix*-stem-suffix* (* denotes zero or more occurrences of a morpheme). Our method is seeded by a small manually segmented Arabic corpus and uses it to bootstrap an unsupervised algorithm to build the Arabic word segmenter from a large unsegmented Arabic corpus. The algorithm uses a trigram language model to determine the most probable morpheme sequence for a given input. The language model is initially estimated from a small manually segmented corpus of about 110,000 words. To improve the segmentation accuracy, we use an unsupervised algorithm for automatically acquiring new stems from a 155 million word unsegmented corpus, and re-estimate the model parameters with the expanded vocabulary and training corpus. The resulting Arabic word segmentation system achieves around 97% exact match accuracy on a test corpus containing 28,449 word tokens. We believe this is a state-of-the-art performance and the algorithm can be used for many highly inflected languages provided that one can create a small manually segmented corpus of the language of interest.<\/p>\n","protected":false},"excerpt":{"rendered":"

We approximate Arabic’s rich morphology by a model that a word consists of a sequence of morphemes in the pattern prefix*-stem-suffix* (* denotes zero or more occurrences of a morpheme). Our method is seeded by a small manually segmented Arabic corpus and uses it to bootstrap an unsupervised algorithm to build the Arabic word segmenter […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-470010","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"ACL '03 Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1","msr_affiliation":"","msr_published_date":"2003-07-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"399-406","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/dl.acm.org\/citation.cfm?id=1075147","msr_doi":"10.3115\/1075096.1075147","msr_publication_uploader":[{"type":"url","title":"https:\/\/dl.acm.org\/citation.cfm?id=1075147","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.3115\/1075096.1075147","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/dl.acm.org\/citation.cfm?id=1075147"}],"msr-author-ordering":[{"type":"text","value":"Young-Suk Lee","user_id":0,"rest_url":false},{"type":"text","value":"Kishore Papineni","user_id":0,"rest_url":false},{"type":"text","value":"Salim Roukos","user_id":0,"rest_url":false},{"type":"text","value":"Ossama Emam","user_id":0,"rest_url":false},{"type":"user_nicename","value":"hanyh","user_id":31965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=hanyh"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[268548],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/470010"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/470010\/revisions"}],"predecessor-version":[{"id":470019,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/470010\/revisions\/470019"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=470010"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=470010"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=470010"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=470010"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=470010"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=470010"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=470010"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=470010"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=470010"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=470010"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=470010"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=470010"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=470010"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=470010"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=470010"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=470010"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}