{"id":479904,"date":"2018-04-16T09:29:49","date_gmt":"2018-04-16T16:29:49","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=479904"},"modified":"2020-02-11T09:15:15","modified_gmt":"2020-02-11T17:15:15","slug":"optimizing-query-evaluations-using-reinforcement-learning-web-search","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/optimizing-query-evaluations-using-reinforcement-learning-web-search\/","title":{"rendered":"Optimizing Query Evaluations Using Reinforcement Learning for Web Search"},"content":{"rendered":"

In web search, typically a candidate generation step selects a small set of documents\u2014from collections containing as many as billions of web pages\u2014that are subsequently ranked and pruned before being presented to the user. In Bing, the candidate generation involves scanning the index using statically designed match plans that prescribe sequences of different match criteria and stopping conditions. In this work, we pose match planning as a reinforcement learning task and observe up to 20% reduction in index blocks accessed, with small or no degradation in the quality of the candidate sets.<\/p>\n","protected":false},"excerpt":{"rendered":"

In web search, typically a candidate generation step selects a small set of documents\u2014from collections containing as many as billions of web pages\u2014that are subsequently ranked and pruned before being presented to the user. In Bing, the candidate generation involves scanning the index using statically designed match plans that prescribe sequences of different match criteria […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-479904","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-5-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1804.04410","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1804.04410","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1804.04410"}],"msr-author-ordering":[{"type":"user_nicename","value":"Corby Rosset","user_id":38922,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Corby Rosset"},{"type":"text","value":"Damien Jose","user_id":0,"rest_url":false},{"type":"text","value":"Gargi Ghosh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bhaskar Mitra","user_id":31257,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bhaskar Mitra"},{"type":"text","value":"Saurabh Tiwary","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[267093],"msr_project":[691494,649749],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":691494,"post_title":"Project Turing","post_name":"project-turing","post_type":"msr-project","post_date":"2020-09-13 20:41:57","post_modified":"2021-11-01 18:05:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-turing\/","post_excerpt":"A deep learning initiative inside Microsoft to build the best-in-class models for use by Microsoft and power AI applications across entire Microsoft product family (Word, PowerPoint, Office, Dynamics, etc.) and make them available for use through Azure.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/691494"}]}},{"ID":649749,"post_title":"AI at Scale","post_name":"ai-at-scale","post_type":"msr-project","post_date":"2020-05-19 08:01:11","post_modified":"2024-09-09 08:40:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-at-scale\/","post_excerpt":"AI at Scale is an applied research initiative that works to evolve Microsoft products with the adoption of deep learning for both natural language text and image processing. Our work is actively being integrated into Microsoft products, including Bing, Office, and Xbox.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/649749"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/479904"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/479904\/revisions"}],"predecessor-version":[{"id":636393,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/479904\/revisions\/636393"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=479904"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=479904"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=479904"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=479904"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=479904"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=479904"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=479904"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=479904"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=479904"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=479904"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=479904"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=479904"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=479904"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=479904"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=479904"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=479904"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}