{"id":482154,"date":"2018-04-23T14:27:51","date_gmt":"2018-04-23T21:27:51","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=482154"},"modified":"2018-10-16T22:27:12","modified_gmt":"2018-10-17T05:27:12","slug":"domain-speaker-adaptation-cortana-speech-recognition","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/domain-speaker-adaptation-cortana-speech-recognition\/","title":{"rendered":"DOMAIN AND SPEAKER ADAPTATION FOR CORTANA SPEECH RECOGNITION"},"content":{"rendered":"
Voice assistant represents one of the most popular and important scenarios<\/p>\n
for speech recognition. In this paper, we propose two adaptation<\/p>\n
approaches to customize a multi-style well-trained acoustic<\/p>\n
model towards its subsidiary domain of Cortana assistant. First, we<\/p>\n
present anchor-based speaker adaptation by extracting the speaker<\/p>\n
information, i-vector or d-vector embeddings, from the anchor segments<\/p>\n
of \u2018Hey Cortana\u2019. The anchor embeddings are mapped to<\/p>\n
layer-wise parameters to control the transformations of both weight<\/p>\n
matrices and biases of multiple layers. Second, we directly update<\/p>\n
the existing model parameters for domain adaptation. We demonstrate<\/p>\n
that prior distribution should be updated along with the network<\/p>\n
adaptation to compensate the label bias from the development<\/p>\n
data. Updating the priors may have a significant impact when the target<\/p>\n
domain features high occurrence of anchor words. Experiments<\/p>\n
on Hey Cortana desktop test set show that both approaches improve<\/p>\n
the recognition accuracy significantly. The anchor-based adaptation<\/p>\n
using the anchor d-vector and the prior interpolation achieves 32%<\/p>\n
relative reduction in WER over the generic model.<\/p>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Voice assistant represents one of the most popular and important scenarios for speech recognition. In this paper, we propose two adaptation approaches to customize a multi-style well-trained acoustic model towards its subsidiary domain of Cortana assistant. First, we present anchor-based speaker adaptation by extracting the speaker information, i-vector or d-vector embeddings, from the anchor segments […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-482154","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"ICASSP","msr_affiliation":"","msr_published_date":"2018-04-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"482157","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ICASSP2018_CortanaAdapt","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/04\/ICASSP2018_CortanaAdapt.pdf","id":482157,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yong Zhao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jinyu Li","user_id":32312,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jinyu Li"},{"type":"text","value":"Shixiong Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Liping Chen","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yifan Gong","user_id":34994,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yifan Gong"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144911],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/482154"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/482154\/revisions"}],"predecessor-version":[{"id":482160,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/482154\/revisions\/482160"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=482154"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=482154"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=482154"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=482154"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=482154"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=482154"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=482154"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=482154"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=482154"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=482154"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=482154"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=482154"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=482154"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=482154"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=482154"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=482154"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}