{"id":483051,"date":"2018-04-26T11:11:08","date_gmt":"2018-04-26T18:11:08","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=483051"},"modified":"2020-06-08T12:47:28","modified_gmt":"2020-06-08T19:47:28","slug":"multiresolution-analysis-detection-abnormal-lung-sounds","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multiresolution-analysis-detection-abnormal-lung-sounds\/","title":{"rendered":"A multiresolution analysis for detection of abnormal lung sounds"},"content":{"rendered":"

Automated analysis and detection of abnormal lung sound patterns has great potential for improving access to standardized diagnosis of pulmonary diseases, especially in low-resource settings. In the current study, we develop signal processing tools for analysis of pediatric auscultations recorded under non-ideal noisy conditions. The proposed model is based on a biomimetic multi-resolution analysis of the spectro-temporal modulation details in lung sounds. The methodology provides a detailed description of joint spectral and temporal variations in the signal and proves to be more robust than frequency-based techniques in distinguishing crackles and wheezes from normal breathing sounds.2012.A multiresolution analysis for detection of abnormal lung sounds<\/p>\n","protected":false},"excerpt":{"rendered":"

Automated analysis and detection of abnormal lung sound patterns has great potential for improving access to standardized diagnosis of pulmonary diseases, especially in low-resource settings. In the current study, we develop signal processing tools for analysis of pediatric auscultations recorded under non-ideal noisy conditions. The proposed model is based on a biomimetic multi-resolution analysis of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13553],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-483051","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-medical-health-genomics","msr-locale-en_us"],"msr_publishername":"IEEE Xplore","msr_edition":"","msr_affiliation":"","msr_published_date":"2012-8-28","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"483054","msr_publicationurl":"https:\/\/ieeexplore.ieee.org\/stamp\/stamp.jsp?tp=&arnumber=6346630","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/04\/2012.A-multiresolution-analysis-for-detection-of-abnormal-lung-sounds.pdf","id":"483054","title":"2012.A multiresolution analysis for detection of abnormal lung sounds","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ieeexplore.ieee.org\/stamp\/stamp.jsp?tp=&arnumber=6346630","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1109\/EMBC.2012.6346630","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/ieeexplore.ieee.org\/stamp\/stamp.jsp?tp=&arnumber=6346630"}],"msr-author-ordering":[{"type":"user_nicename","value":"Dimitra Emmanouilidou","user_id":37461,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dimitra Emmanouilidou"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/483051"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/483051\/revisions"}],"predecessor-version":[{"id":483072,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/483051\/revisions\/483072"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=483051"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=483051"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=483051"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=483051"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=483051"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=483051"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=483051"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=483051"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=483051"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=483051"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=483051"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=483051"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=483051"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=483051"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=483051"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=483051"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}