{"id":485310,"date":"2018-07-12T11:27:50","date_gmt":"2018-07-12T18:27:50","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=485310"},"modified":"2019-09-23T16:34:58","modified_gmt":"2019-09-23T23:34:58","slug":"efficient-attribute-recommendation-with-probabilistic-guarantee","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/efficient-attribute-recommendation-with-probabilistic-guarantee\/","title":{"rendered":"Efficient Attribute Recommendation with Probabilistic Guarantee"},"content":{"rendered":"

We study how to efficiently solve a primitive data
\nexploration problem: Given two ad-hoc predicates which define two subsets
\nof a relational table, find the top-K attributes whose distributions in
\nthe two subsets deviate most from each other. The deviation is measured
\nby \u21131 or \u21132 distance. The exact approach is to query the full table to
\ncalculate the deviation for each attribute and then sort them. It is too
\nexpensive for large tables. Researchers have proposed heuristic sampling
\nsolutions to avoid accessing the entire table for all attributes. However,
\nthese solutions have no theoretical guarantee of correctness and their
\nspeedup over the exact approach is limited. In this paper, we develop an
\nadaptive querying solution with probabilistic guarantee of
\ncorrectness and near-optimal sample complexity. We perform experiments in both
\nsynthetic and real-world datasets. Compared to the exact approach
\nimplemented with a commercial DBMS, previous sampling solutions achieve
\nup to 2\u00d7 speedup with erroneous answers. Our solution can produce 25\u00d7
\nspeedup with near-zero error in the answer.<\/p>\n","protected":false},"excerpt":{"rendered":"

We study how to efficiently solve a primitive data exploration problem: Given two ad-hoc predicates which define two subsets of a relational table, find the top-K attributes whose distributions in the two subsets deviate most from each other. The deviation is measured by \u21131 or \u21132 distance. The exact approach is to query the full […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-485310","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"ACM \u2013 Association for Computing Machinery","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-7-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"490028","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/07\/KDD18TopKAttr.pdf","id":"490028","title":"KDD18TopKAttr","label_id":"243103","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/3219819.3219984","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Chi Wang","user_id":31406,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chi Wang"},{"type":"user_nicename","value":"Kaushik Chakrabarti","user_id":32503,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kaushik Chakrabarti"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[700999],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":700999,"post_title":"Sublinear Approximation for Large-scale Data Science","post_name":"sublinear-approximation-for-large-scale-data-science","post_type":"msr-project","post_date":"2020-10-24 11:50:50","post_modified":"2020-10-24 12:11:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sublinear-approximation-for-large-scale-data-science\/","post_excerpt":"One challenge in large scale data science is that even linear algorithms can result in large data processing cost and long latency, which limit the interactivity of the system and the productivity of data scientists. This project has an ambitious goal of enabling data science with sublinear complexity, such that the cost grows slowly or independently with the data size. We explore approximation methods for time-consuming tasks in data analytics and machine learning. Our methods…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/700999"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485310"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485310\/revisions"}],"predecessor-version":[{"id":488555,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485310\/revisions\/488555"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=485310"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=485310"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=485310"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=485310"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=485310"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=485310"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=485310"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=485310"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=485310"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=485310"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=485310"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=485310"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=485310"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=485310"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=485310"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=485310"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}