{"id":485619,"date":"2018-05-11T09:59:10","date_gmt":"2018-05-11T16:59:10","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=485619"},"modified":"2018-10-16T22:25:41","modified_gmt":"2018-10-17T05:25:41","slug":"rapid-adaptation-conditionally-shifted-neurons","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/rapid-adaptation-conditionally-shifted-neurons\/","title":{"rendered":"Rapid Adaptation with Conditionally Shifted Neurons"},"content":{"rendered":"
We describe a mechanism by which artificial neural networks can learn rapid adaptation \u2013 the ability to adapt on the fly, with little data, to new tasks \u2013 that we call conditionally shifted neurons. We apply this mechanism in the framework of metalearning, where the aim is to replicate some of the flexibility of human learning in machines. Conditionally shifted neurons modify their activation values with task-specific shifts retrieved from a memory module, which is populated rapidly based on limited task experience. On meta-learning benchmarks from the vision and language domains, models augmented with conditionally shifted neurons achieve state-of-the-art results.<\/p>\n","protected":false},"excerpt":{"rendered":"
We describe a mechanism by which artificial neural networks can learn rapid adaptation \u2013 the ability to adapt on the fly, with little data, to new tasks \u2013 that we call conditionally shifted neurons. We apply this mechanism in the framework of metalearning, where the aim is to replicate some of the flexibility of human […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-485619","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"In the proceedings of the Thirty-fifth International Conference on Machine Learning","msr_affiliation":"","msr_published_date":"2018-03-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"485625","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1712.09926","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Rapid Adaptation with Conditionally Shifted Neurons","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/05\/1712.09926.pdf","id":485625,"label_id":0},{"type":"url","title":"https:\/\/arxiv.org\/abs\/1712.09926","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1712.09926"}],"msr-author-ordering":[{"type":"user_nicename","value":"Tsendsuren Munkhdalai","user_id":37212,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tsendsuren Munkhdalai"},{"type":"user_nicename","value":"Xingdi (Eric) Yuan","user_id":37167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xingdi (Eric) Yuan"},{"type":"user_nicename","value":"Soroush Mehri","user_id":37215,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Soroush Mehri"},{"type":"user_nicename","value":"Adam Trischler","user_id":37143,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Adam Trischler"}],"msr_impact_theme":[],"msr_research_lab":[437514],"msr_event":[],"msr_group":[629145],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485619"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485619\/revisions"}],"predecessor-version":[{"id":485631,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/485619\/revisions\/485631"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=485619"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=485619"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=485619"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=485619"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=485619"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=485619"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=485619"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=485619"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=485619"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=485619"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=485619"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=485619"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=485619"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=485619"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=485619"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=485619"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}