{"id":487064,"date":"2018-05-20T02:41:05","date_gmt":"2018-05-20T09:41:05","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=487064"},"modified":"2018-10-16T22:25:49","modified_gmt":"2018-10-17T05:25:49","slug":"twofold-siamese-network-real-time-object-tracking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/twofold-siamese-network-real-time-object-tracking\/","title":{"rendered":"A Twofold Siamese Network for Real-Time Object Tracking"},"content":{"rendered":"

Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similarity learning Siamese network. An important design choice in SA-Siam is to separately train the two branches to keep the heterogeneity of the two types of features. In addition, we propose a channel attention mechanism for the semantic branch. Channel-wise weights are computed according to the channel activations around the target position. While the inherited architecture from SiamFC allows our tracker to operate beyond real-time, the twofold design and the attention mechanism significantly improve the tracking performance. The proposed SA-Siam outperforms all other real-time trackers by a large margin on OTB-2013\/50\/100 benchmarks.<\/p>\n","protected":false},"excerpt":{"rendered":"

Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similarity learning Siamese network. An important […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-487064","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"Conference on Computer Vision and Pattern Recognition","msr_affiliation":"","msr_published_date":"2018-06-19","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/cvpr2018.thecvf.com\/program\/main_conference","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/cvpr2018.thecvf.com\/program\/main_conference","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/cvpr2018.thecvf.com\/program\/main_conference"}],"msr-author-ordering":[{"type":"text","value":"Anfeng He","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chong Luo","user_id":31450,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chong Luo"},{"type":"text","value":"Xinmei Tian","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Wenjun Zeng","user_id":34830,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wenjun Zeng"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144711],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/487064"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/487064\/revisions"}],"predecessor-version":[{"id":487085,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/487064\/revisions\/487085"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=487064"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=487064"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=487064"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=487064"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=487064"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=487064"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=487064"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=487064"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=487064"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=487064"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=487064"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=487064"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=487064"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=487064"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=487064"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=487064"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}