{"id":488078,"date":"2018-05-28T02:23:31","date_gmt":"2018-05-28T09:23:31","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=488078"},"modified":"2018-10-16T22:22:31","modified_gmt":"2018-10-17T05:22:31","slug":"automatic-detection-code-switching-style-acoustics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/automatic-detection-code-switching-style-acoustics\/","title":{"rendered":"Automatic Detection of Code-switching Style from Acoustics"},"content":{"rendered":"
Multilingual speakers switch between languages displaying inter sentential, intra sentential, and congruent lexicalization based transitions. While monolingual ASR systems may be capable of recognizing a few words from a foreign language, they are usually not robust enough to handle these varied styles of code-switching. There is also a lack of large code-switched speech corpora capturing all these styles making it difficult to build code-switched speech recognition systems. We hypothesize that it may be useful for an ASR system to be able to first detect the switching style of a particular utterance from acoustics, and then use specialized language models or other adaptation techniques for decoding the speech. In this paper, we look at the first problem of detecting code-switching style from acoustics. We classify code-switched SpanishEnglish and Hindi-English corpora using two metrics and show that features extracted from acoustics alone can distinguish between different kinds of codeswitching in these language pairs.<\/p>\n","protected":false},"excerpt":{"rendered":"
Multilingual speakers switch between languages displaying inter sentential, intra sentential, and congruent lexicalization based transitions. While monolingual ASR systems may be capable of recognizing a few words from a foreign language, they are usually not robust enough to handle these varied styles of code-switching. There is also a lack of large code-switched speech corpora capturing […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-488078","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-07-19","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"488081","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"automatic_detection_cs_style_cameraready","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/05\/automatic_detection_cs_style_cameraready.pdf","id":488081,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"SaiKrishna Rallabandi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sunayana Sitaram","user_id":37287,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sunayana Sitaram"},{"type":"text","value":"Alan W Black","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144940],"msr_project":[248216],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":248216,"post_title":"Project Melange","post_name":"melange","post_type":"msr-project","post_date":"2016-07-04 04:02:18","post_modified":"2022-04-29 10:24:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/melange\/","post_excerpt":"The goal of Project M\u00e9lange is to understand the uses of and build tools around code-mixing, analyze and understand code-switching behavior, and equip speech and language processing systems with the capabilities of processing, understanding and generating code-switched language.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/248216"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/488078"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/488078\/revisions"}],"predecessor-version":[{"id":505025,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/488078\/revisions\/505025"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=488078"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=488078"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=488078"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=488078"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=488078"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=488078"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=488078"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=488078"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=488078"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=488078"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=488078"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=488078"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=488078"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=488078"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=488078"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=488078"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}