{"id":496640,"date":"2018-07-21T09:58:51","date_gmt":"2018-07-21T16:58:51","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=496640"},"modified":"2021-08-17T07:13:13","modified_gmt":"2021-08-17T14:13:13","slug":"focus-querying-large-video-datasets-with-low-latency-and-low-cost","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/focus-querying-large-video-datasets-with-low-latency-and-low-cost\/","title":{"rendered":"Focus: Querying Large Video Datasets with Low Latency and Low Cost"},"content":{"rendered":"
Large volumes of video are continuously recorded by cameras deployed for traffic control and surveillance with the goal of answering \u201cafter the fact\u201d queries such as: identify video frames with objects of certain classes (cars, bags) from many days of recorded video. Current systems for processing such queries on large video datasets incur either high cost at video ingest time or high latency at query time. We present Focus, a system providing both low-cost and low-latency querying on large video datasets. Focus\u2019 architecture flexibly and effectively divides the query processing work between ingest time and query time. At ingest time (on live videos), Focus uses cheap convolutional network classifiers (CNNs) to construct an approximate index of all possible object classes in each frame (to handle queries for any class in the future). At query time, Focus leverages this approximate index to provide low latency, but compensates for the lower accuracy of the cheap CNNs through the judicious use of an expensive CNN. Experiments on commercial video streams show that Focus is 48x (up to 92x) cheaper than using expensive CNNs for ingestion, and provides 125x (up to 607x) lower query latency than a state-of-the-art video querying system (NoScope).<\/p>\n","protected":false},"excerpt":{"rendered":"
Large volumes of video are continuously recorded by cameras deployed for traffic control and surveillance with the goal of answering \u201cafter the fact\u201d queries such as: identify video frames with objects of certain classes (cars, bags) from many days of recorded video. Current systems for processing such queries on large video datasets incur either high […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-496640","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-10-9","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"508259","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/07\/Focus_OSDI18.pdf","id":"508259","title":"Focus_OSDI18","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/osdi18\/presentation\/hsieh","label_id":"243115","label":0}],"msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Kevin Hsieh","user_id":39459,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kevin Hsieh"},{"type":"user_nicename","value":"Ganesh Ananthanarayanan","user_id":31834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ganesh Ananthanarayanan"},{"type":"user_nicename","value":"Peter Bod\u00edk","user_id":33239,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Peter Bod\u00edk"},{"type":"user_nicename","value":"Shivaram Venkataraman","user_id":37002,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shivaram Venkataraman"},{"type":"user_nicename","value":"Victor Bahl","user_id":31167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Victor Bahl"},{"type":"user_nicename","value":"Matthai Philipose","user_id":32834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Matthai Philipose"},{"type":"text","value":"Phillip B. Gibbons","user_id":0,"rest_url":false},{"type":"text","value":"Onur Mutlu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144899],"msr_project":[635574,382664],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":635574,"post_title":"Watch For","post_name":"watch-for","post_type":"msr-project","post_date":"2021-08-20 08:33:39","post_modified":"2022-12-22 12:43:09","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/watch-for\/","post_excerpt":"Transitioned | Watch For is a large-scale, low-cost, highly programmable media analysis platform built on Azure.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/635574"}]}},{"ID":382664,"post_title":"Microsoft Rocket for Live Video Analytics","post_name":"live-video-analytics","post_type":"msr-project","post_date":"2017-05-15 08:28:48","post_modified":"2020-11-22 08:59:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/live-video-analytics\/","post_excerpt":"Project Rocket's goal is to democratize video analytics: build a system for real-time, low-cost, accurate analysis of live videos. This system will work across a geo-distributed hierarchy of intelligent edges and large clouds, with the ultimate goal of making it easy and affordable for anyone with a camera stream to benefit from video analytics.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/382664"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/496640"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/496640\/revisions"}],"predecessor-version":[{"id":685863,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/496640\/revisions\/685863"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=496640"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=496640"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=496640"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=496640"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=496640"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=496640"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=496640"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=496640"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=496640"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=496640"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=496640"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=496640"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=496640"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=496640"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=496640"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=496640"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}