{"id":503036,"date":"2018-08-27T17:01:42","date_gmt":"2018-08-28T00:01:42","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=503036"},"modified":"2019-05-20T10:48:26","modified_gmt":"2019-05-20T17:48:26","slug":"session-level-language-modeling-for-conversational-speech","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/session-level-language-modeling-for-conversational-speech\/","title":{"rendered":"Session-level Language Modeling for Conversational Speech"},"content":{"rendered":"
We propose to generalize language models for conversational speech recognition to allow them to operate across utterance boundaries and speaker changes, thereby capturing conversation-level phenomena such as adjacency pairs, lexical entrainment, and topical coherence. The model consists of a long-short-term memory (LSTM) recurrent network that reads the entire word-level history of a conversation, as well as information about turn taking and speaker overlap, in order to predict each next word. The model is applied in a rescoring framework, where the word history prior to the current utterance is approximated with preliminary recognition results. In experiments in the conversational telephone speech domain (Switchboard) we find that such a model gives substantial perplexity reductions over a standard LSTM-LM with utterance scope, as well as improvements in word error rate.<\/p>\n","protected":false},"excerpt":{"rendered":"
We propose to generalize language models for conversational speech recognition to allow them to operate across utterance boundaries and speaker changes, thereby capturing conversation-level phenomena such as adjacency pairs, lexical entrainment, and topical coherence. The model consists of a long-short-term memory (LSTM) recurrent network that reads the entire word-level history of a conversation, as well […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-503036","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Assocation for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-11-2","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"503039","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2018\/08\/session_lm_emnlp2018-FINAL.pdf","id":"503039","title":"session_lm_emnlp2018-FINAL","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Wayne Xiong","user_id":34811,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wayne Xiong"},{"type":"user_nicename","value":"Lingfeng Wu","user_id":32687,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lingfeng Wu"},{"type":"text","value":"Jun Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Andreas Stolcke","user_id":31054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andreas Stolcke"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[664548],"msr_project":[350126,171185],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":350126,"post_title":"Human Parity in Speech Recognition","post_name":"human-parity-speech-recognition","post_type":"msr-project","post_date":"2017-01-10 11:44:06","post_modified":"2019-08-19 10:12:03","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/human-parity-speech-recognition\/","post_excerpt":"This ongoing project aims to drive the state of the art in speech recognition toward \u00a0matching, and ultimately surpassing, humans, with a focus on unconstrained conversational speech.\u00a0\u00a0 The goal is a moving target as the scope of the task is broadened from high signal-to-noise speech between strangers (like in the Switchboard corpus) to\u00a0include\u00a0scenarios that make\u00a0recognition more challenging, such\u00a0as:\u00a0 conversation\u00a0among familiar speakers, multi-speaker meetings, and speech captured in noisy or distant-microphone environments. Related DataSkeptic podcast interview…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/350126"}]}},{"ID":171185,"post_title":"Meeting Recognition and Understanding","post_name":"meeting-recognition-and-understanding","post_type":"msr-project","post_date":"2013-07-30 14:28:35","post_modified":"2023-08-12 21:11:41","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/meeting-recognition-and-understanding\/","post_excerpt":"In most organizations, staff spend many hours in meetings. This project addresses all levels of analysis and understanding, from speaker tracking and robust speech transcription to meaning extraction and summarization, with the goal of increasing productivity both during the meeting and after, for both participants and nonparticipants. The Meeting Recognition and Understanding project is a collection of online and offline spoken language understanding tasks. The following functions could be performed both on- and offline, but…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171185"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/503036","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/503036\/revisions"}],"predecessor-version":[{"id":503042,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/503036\/revisions\/503042"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=503036"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=503036"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=503036"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=503036"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=503036"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=503036"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=503036"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=503036"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=503036"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=503036"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=503036"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=503036"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=503036"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=503036"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=503036"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=503036"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}