{"id":504989,"date":"2018-09-07T16:32:22","date_gmt":"2018-09-07T23:32:22","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=504989"},"modified":"2018-10-16T20:21:01","modified_gmt":"2018-10-17T03:21:01","slug":"computing-supersingular-isogenies-on-kummer-surfaces","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/computing-supersingular-isogenies-on-kummer-surfaces\/","title":{"rendered":"Computing supersingular isogenies on Kummer surfaces"},"content":{"rendered":"
We apply Scholten’s construction to give explicit isogenies between the Weil restriction of supersingular Montgomery curves with full rational 2-torsion over GF(p^2) and corresponding abelian surfaces over GF(p). Subsequently, we show that isogeny-based public key cryptography can exploit the fast Kummer surface arithmetic that arises from the theory of theta functions. In particular, we show that chains of 2-isogenies between elliptic curves can instead be computed as chains of Richelot (2,2)-isogenies between Kummer surfaces. This gives rise to new possibilities for efficient supersingular isogeny-based cryptography.<\/p>\n","protected":false},"excerpt":{"rendered":"
We apply Scholten’s construction to give explicit isogenies between the Weil restriction of supersingular Montgomery curves with full rational 2-torsion over GF(p^2) and corresponding abelian surfaces over GF(p). Subsequently, we show that isogeny-based public key cryptography can exploit the fast Kummer surface arithmetic that arises from the theory of theta functions. In particular, we show […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13546],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-504989","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"ASIACRYPT 2018","msr_affiliation":"","msr_published_date":"2018-12-08","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"504992","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"sidh-kummer","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2018\/09\/sidh-kummer.pdf","id":504992,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Craig Costello","user_id":31476,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Craig Costello"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[428250],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":428250,"post_title":"Post-quantum Cryptography","post_name":"post-quantum-cryptography","post_type":"msr-project","post_date":"2018-04-30 12:33:53","post_modified":"2024-09-30 21:14:11","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/post-quantum-cryptography\/","post_excerpt":"Cryptography in the era of quantum computers The private communication of individuals and organizations is protected online by cryptography. Cryptography protects our information as it travels over and is stored on the internet\u2014whether making a purchase from an online store, uploading data to the cloud, or accessing work email remotely. Our research and engineering work has focused on protecting private information and communication from the possible threat of future quantum computers. Quantum Computers will advance…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/428250"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/504989","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/504989\/revisions"}],"predecessor-version":[{"id":504998,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/504989\/revisions\/504998"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=504989"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=504989"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=504989"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=504989"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=504989"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=504989"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=504989"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=504989"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=504989"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=504989"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=504989"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=504989"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=504989"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=504989"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=504989"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=504989"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}