{"id":508631,"date":"2018-10-01T19:58:46","date_gmt":"2018-10-02T02:58:46","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=508631"},"modified":"2019-06-07T16:35:53","modified_gmt":"2019-06-07T23:35:53","slug":"neural-approaches-to-conversational-ai-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/neural-approaches-to-conversational-ai-2\/","title":{"rendered":"Neural Approaches to Conversational AI"},"content":{"rendered":"
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.<\/p>\n","protected":false},"excerpt":{"rendered":"
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-508631","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-2-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Foundations and Trends in Information Retrieval","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1809.08267","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1809.08267","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1809.08267"}],"msr-author-ordering":[{"type":"edited_text","value":"Jianfeng Gao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianfeng Gao"},{"type":"edited_text","value":"Michel Galley","user_id":32887,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Michel Galley"},{"type":"text","value":"Lihong Li","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144931],"msr_project":[649749,442191,398369,377990,171447],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":649749,"post_title":"AI at Scale","post_name":"ai-at-scale","post_type":"msr-project","post_date":"2020-05-19 08:01:11","post_modified":"2024-09-09 08:40:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-at-scale\/","post_excerpt":"AI at Scale is an applied research initiative that works to evolve Microsoft products with the adoption of deep learning for both natural language text and image processing. Our work is actively being integrated into Microsoft products, including Bing, Office, and Xbox.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/649749"}]}},{"ID":442191,"post_title":"TextWorld","post_name":"textworld","post_type":"msr-project","post_date":"2018-06-14 06:00:56","post_modified":"2022-03-09 08:17:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/textworld\/","post_excerpt":"Microsoft TextWorld is an open-source, extensible engine that both generates and simulates text games. You can use it to train reinforcement learning (RL) agents to learn skills such as language understanding and grounding, combined with sequential decision making.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/442191"}]}},{"ID":398369,"post_title":"Deep Learning for Machine Reading Comprehension","post_name":"deep-learning-machine-reading-comprehension","post_type":"msr-project","post_date":"2017-07-10 11:45:52","post_modified":"2023-04-03 10:54:30","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/deep-learning-machine-reading-comprehension\/","post_excerpt":"The goal of this project is to teach a computer to read and answer general questions pertaining to a document. We recently released a large scale MRC dataset, MS MARCO.\u00a0 We developed a ReasoNet\u00a0 model to mimic the inference process of human readers. With a question in mind, ReasoNets read a document repeatedly, each time focusing on different parts of the document until a satisfying answer is found or formed. The extension of ReasoNet (ReasoNet-Memory)…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/398369"}]}},{"ID":377990,"post_title":"Deep Reinforcement Learning for Goal-Oriented Dialogues","post_name":"deep-reinforcement-learning-goal-oriented-dialogue","post_type":"msr-project","post_date":"2017-04-18 11:51:36","post_modified":"2019-08-19 10:03:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/deep-reinforcement-learning-goal-oriented-dialogue\/","post_excerpt":"Microsoft Dialogue Challenge: Building End-to-End Task-Completion Dialogue Systems, at SLT 2018. [Proposal] All the data, source code and schedule information will be updated here. This project aims to develop intelligent dialogue agents to help users effectively accomplish tasks via natural language conversation. A typical goal-oriented dialogue system contains three major components: natural language understanding (NLU), natural language generation (NLG), and dialogue management (DM) that consists of state tracking and policy learning. Our research focus is…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/377990"}]}},{"ID":171447,"post_title":"Data-Driven Conversation","post_name":"data-driven-conversation","post_type":"msr-project","post_date":"2015-03-19 17:13:58","post_modified":"2019-08-19 10:40:23","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-driven-conversation\/","post_excerpt":"This project aims to enable people to converse with their devices. We are trying to teach devices to engage with humans using human language in ways that appear seamless and natural to humans. Our research focuses on statistical methods by which devices can learn from human-human conversational interactions and can situate responses in the verbal context and in physical or virtual environments. Natural and Engaging Agents that process human language will play a growing role…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171447"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/508631"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/508631\/revisions"}],"predecessor-version":[{"id":591721,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/508631\/revisions\/591721"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=508631"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=508631"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=508631"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=508631"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=508631"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=508631"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=508631"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=508631"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=508631"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=508631"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=508631"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=508631"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=508631"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=508631"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=508631"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=508631"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}