{"id":546306,"date":"2018-10-29T13:28:40","date_gmt":"2018-10-29T20:28:40","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=546306"},"modified":"2018-10-29T13:28:40","modified_gmt":"2018-10-29T20:28:40","slug":"the-fuzzylog-a-partially-ordered-shared-log","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-fuzzylog-a-partially-ordered-shared-log\/","title":{"rendered":"The FuzzyLog: A Partially Ordered Shared Log"},"content":{"rendered":"

The FuzzyLog is a partially ordered shared log abstraction. Distributed applications can concurrently append to the partial order and play it back. FuzzyLog applications obtain the benefits of an underlying shared log — extracting strong consistency, durability, and failure atomicity in simple ways — without suffering from its drawbacks. By exposing a partial order, the FuzzyLog enables three key capabilities for applications: linear scaling for throughput and capacity (without sacrificing atomicity), weaker consistency guarantees, and tolerance to network partitions. We present Dapple, a distributed implementation of the FuzzyLog abstraction that stores the partial order compactly and supports efficient appends\/playback via a new ordering protocol. We implement several data structures and applications over the FuzzyLog, including several map variants as well as a ZooKeeper implementation. Our evaluation shows that these applications are compact, fast, and flexible: they retain the simplicity (100s of lines of code) and strong semantics (durability and failure atomicity) of a shared log design while exploiting the partial order of the Fuzzy-
\nLog for linear scalability, flexible consistency guarantees (e.g., causal+ consistency), and network partition tolerance. On a 6-node Dapple deployment, our FuzzyLog-based ZooKeeper supports 3M\/sec single-key writes, and 150K\/sec atomic cross-shard renames.<\/p>\n","protected":false},"excerpt":{"rendered":"

The FuzzyLog is a partially ordered shared log abstraction. Distributed applications can concurrently append to the partial order and play it back. FuzzyLog applications obtain the benefits of an underlying shared log — extracting strong consistency, durability, and failure atomicity in simple ways — without suffering from its drawbacks. By exposing a partial order, the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-546306","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-10-8","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/sidsen.org\/papers\/fuzzylog-osdi18.pdf","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"","label_id":"243118","label":0}],"msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Joshua Lockerman","user_id":0,"rest_url":false},{"type":"text","value":"Jose Faleiro","user_id":0,"rest_url":false},{"type":"text","value":"Juno Kim","user_id":0,"rest_url":false},{"type":"text","value":"Soham Sankaran","user_id":0,"rest_url":false},{"type":"text","value":"Daniel J. Abadi","user_id":0,"rest_url":false},{"type":"text","value":"James Aspnes","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Siddhartha Sen","user_id":33656,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Siddhartha Sen"},{"type":"text","value":"Mahesh Balakrishnan","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199571],"msr_event":[],"msr_group":[144947],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/546306"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/546306\/revisions"}],"predecessor-version":[{"id":546330,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/546306\/revisions\/546330"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=546306"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=546306"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=546306"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=546306"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=546306"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=546306"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=546306"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=546306"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=546306"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=546306"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=546306"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=546306"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=546306"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=546306"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=546306"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=546306"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}