{"id":558489,"date":"2018-12-31T00:05:47","date_gmt":"2018-12-31T08:05:47","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=558489"},"modified":"2018-12-31T00:05:47","modified_gmt":"2018-12-31T08:05:47","slug":"generating-diverse-numbers-of-diverse-keyphrases","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/generating-diverse-numbers-of-diverse-keyphrases\/","title":{"rendered":"Generating Diverse Numbers of Diverse Keyphrases"},"content":{"rendered":"
Existing keyphrase generation studies suffer from the problems of generating duplicate phrases and deficient evaluation based on a fixed number of predicted phrases. We propose a recurrent generative model that generates multiple keyphrases sequentially from a text, with specific modules that promote generation diversity. We further propose two new metrics that consider a variable number of phrases. With both existing and proposed evaluation setups, our model demonstrates superior performance to baselines on three types of keyphrase generation datasets, including two newly introduced in this work: StackExchange and TextWorld ACG. In contrast to previous keyphrase generation approaches, our model generates sets of diverse keyphrases of a variable number.<\/p>\n","protected":false},"excerpt":{"rendered":"
Existing keyphrase generation studies suffer from the problems of generating duplicate phrases and deficient evaluation based on a fixed number of predicted phrases. We propose a recurrent generative model that generates multiple keyphrases sequentially from a text, with specific modules that promote generation diversity. We further propose two new metrics that consider a variable number […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-558489","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-10-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1810.05241","label_id":"243109","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/12\/1810.05241.pdf","id":"558492","title":"1810-05241","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":558492,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/12\/1810.05241.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Xingdi (Eric) Yuan","user_id":37167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xingdi (Eric) Yuan"},{"type":"user_nicename","value":"Tong Wang","user_id":37068,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tong Wang"},{"type":"guest","value":"rui-meng","user_id":357314,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rui-meng"},{"type":"text","value":"Khushboo Thaker","user_id":0,"rest_url":false},{"type":"text","value":"Daqing He","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Adam Trischler","user_id":37143,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Adam Trischler"}],"msr_impact_theme":[],"msr_research_lab":[437514],"msr_event":[],"msr_group":[],"msr_project":[592723,442191],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":{"projects":[{"ID":592723,"post_title":"Machine Reading Comprehension","post_name":"machine-reading-comprehension","post_type":"msr-project","post_date":"2019-07-09 08:41:21","post_modified":"2020-11-12 13:44:24","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/machine-reading-comprehension\/","post_excerpt":"Machine Reading Comprehension (MRC) is a growing field of research, due to its potential in various enterprise applications, as well as the availability of MRC benchmarking datasets.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/592723"}]}},{"ID":442191,"post_title":"TextWorld","post_name":"textworld","post_type":"msr-project","post_date":"2018-06-14 06:00:56","post_modified":"2022-03-09 08:17:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/textworld\/","post_excerpt":"Microsoft TextWorld is an open-source, extensible engine that both generates and simulates text games. You can use it to train reinforcement learning (RL) agents to learn skills such as language understanding and grounding, combined with sequential decision making.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/442191"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558489"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558489\/revisions"}],"predecessor-version":[{"id":558495,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558489\/revisions\/558495"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=558489"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=558489"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=558489"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=558489"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=558489"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=558489"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=558489"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=558489"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=558489"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=558489"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=558489"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=558489"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=558489"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=558489"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=558489"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=558489"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}