{"id":558885,"date":"2019-01-03T15:04:32","date_gmt":"2019-01-03T23:04:32","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=558885"},"modified":"2019-01-03T15:04:32","modified_gmt":"2019-01-03T23:04:32","slug":"better-effectiveness-metrics-for-serps-cards-and-rankings","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/better-effectiveness-metrics-for-serps-cards-and-rankings\/","title":{"rendered":"Better effectiveness metrics for SERPs, cards, and rankings"},"content":{"rendered":"
Offline metrics for IR evaluation are often derived from a user model that seeks to capture the interaction between the user and the ranking, conflating the interaction with a ranking of documents with the user’s interaction with the search results page. A desirable property of any effectiveness metric is if the scores it generates over a set of rankings correlate well with the “satisfaction” or “goodness” scores attributed to those same rankings by a population of searchers.
\nUsing data from a large-scale web search engine, we find that offline effectiveness metrics do not correlate well with a behavioural measure of satisfaction that can be inferred from user activity logs. We then examine three mechanisms to improve the correlation: tuning the model parameters; improving the label coverage, so that more kinds of item are labelled and hence included in the evaluation; and modifying the underlying user models that describe the metrics. In combination, these three mechanisms transform a wide range of common metrics into “card-aware” variants which allow for the gain from cards (or snippets), varying probabilities of clickthrough, and good abandonment. <\/p>\n","protected":false},"excerpt":{"rendered":"
Offline metrics for IR evaluation are often derived from a user model that seeks to capture the interaction between the user and the ranking, conflating the interaction with a ranking of documents with the user’s interaction with the search results page. A desirable property of any effectiveness metric is if the scores it generates over […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-558885","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-12-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Best paper award","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/3291992.3292002","label_id":"243106","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/01\/thomas-adcs-18.pdf","id":"558891","title":"thomas-adcs-18","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":558891,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/01\/thomas-adcs-18.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Paul Thomas","user_id":36042,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Paul Thomas"},{"type":"text","value":"Alistair Moffat","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Peter Bailey","user_id":33216,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Peter Bailey"},{"type":"text","value":"Falk Scholer","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Nick Craswell","user_id":33088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nick Craswell"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[267093,644373],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558885"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558885\/revisions"}],"predecessor-version":[{"id":558894,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/558885\/revisions\/558894"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=558885"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=558885"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=558885"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=558885"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=558885"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=558885"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=558885"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=558885"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=558885"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=558885"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=558885"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=558885"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=558885"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=558885"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=558885"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=558885"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}