{"id":563670,"date":"2019-03-11T16:06:17","date_gmt":"2019-03-11T23:06:17","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=563670"},"modified":"2020-03-17T12:08:46","modified_gmt":"2020-03-17T19:08:46","slug":"netsmf-large-scale-network-embedding-as-sparse-matrix-factorization","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/netsmf-large-scale-network-embedding-as-sparse-matrix-factorization\/","title":{"rendered":"NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization"},"content":{"rendered":"
We study the problem of large-scale network embedding, which aims to learn latent representations for network mining applications.
\nPrevious research shows that 1) popular network embedding benchmarks, such as DeepWalk, are in essence implicitly factorizing a matrix with a closed form, and 2)
\nthe explicit factorization of such matrix generates more powerful embeddings than existing methods.
\nHowever, directly constructing and factorizing this matrix—which is dense—is prohibitively expensive in terms of both time and space, making it not scalable for large networks.<\/p>\n
In this work, we present the algorithm of large-scale network embedding as sparse matrix factorization (NetSMF).
\nNetSMF leverages theories from spectral sparsification to efficiently sparsify the aforementioned dense matrix, enabling significantly improved efficiency in embedding learning.
\nThe sparsified matrix is spectrally close to the original dense one with a theoretically bounded approximation error, which helps maintain the representation power of the learned embeddings.
\nWe conduct experiments on networks of various scales and types.
\nResults show that among both popular benchmarks
\nand factorization based methods, NetSMF is the only method that achieves both high efficiency and effectiveness.
\nWe show that NetSMF requires only 24 hours to generate effective embeddings for a large-scale academic collaboration network with tens of millions of nodes, while it would cost DeepWalk months and is computationally infeasible for the dense matrix factorization solution.
\nThe source code of NetSMF is publicly available.<\/p>\n","protected":false},"excerpt":{"rendered":"
We study the problem of large-scale network embedding, which aims to learn latent representations for network mining applications. Previous research shows that 1) popular network embedding benchmarks, such as DeepWalk, are in essence implicitly factorizing a matrix with a closed form, and 2) the explicit factorization of such matrix generates more powerful embeddings than existing […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-563670","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-5-13","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2019\/03\/www19netsmf.pdf","id":"584698","title":"www19netsmf","label_id":"243103","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":584698,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2019\/05\/www19netsmf.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jiezhong Qiu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yuxiao Dong","user_id":36479,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yuxiao Dong"},{"type":"text","value":"Hao Ma","user_id":0,"rest_url":false},{"type":"text","value":"Jian Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chi Wang","user_id":31406,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chi Wang"},{"type":"user_nicename","value":"Kuansan Wang","user_id":32592,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kuansan Wang"},{"type":"text","value":"Jie Tang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[700999,170262,171464],"publication":[],"video":[],"download":[586726],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":700999,"post_title":"Sublinear Approximation for Large-scale Data Science","post_name":"sublinear-approximation-for-large-scale-data-science","post_type":"msr-project","post_date":"2020-10-24 11:50:50","post_modified":"2020-10-24 12:11:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sublinear-approximation-for-large-scale-data-science\/","post_excerpt":"One challenge in large scale data science is that even linear algorithms can result in large data processing cost and long latency, which limit the interactivity of the system and the productivity of data scientists. This project has an ambitious goal of enabling data science with sublinear complexity, such that the cost grows slowly or independently with the data size. We explore approximation methods for time-consuming tasks in data analytics and machine learning. Our methods…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/700999"}]}},{"ID":170262,"post_title":"Microsoft Academic","post_name":"academic","post_type":"msr-project","post_date":"2020-02-24 17:21:51","post_modified":"2021-06-09 15:47:04","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/academic\/","post_excerpt":"Microsoft Academic is a project exploring\u00a0how to assist human conducting scientific research by leveraging machine's cognitive power\u00a0in memory, computation, sensing, attention, and endurance.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170262"}]}},{"ID":171464,"post_title":"Microsoft Academic Graph","post_name":"microsoft-academic-graph","post_type":"msr-project","post_date":"2015-05-14 04:39:44","post_modified":"2021-05-04 10:10:59","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/microsoft-academic-graph\/","post_excerpt":"The Microsoft Academic Graph is a heterogeneous graph containing scientific publication records, citation relationships between those publications, as well as authors, institutions, journals, conferences, and fields of study.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171464"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/563670","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/563670\/revisions"}],"predecessor-version":[{"id":570420,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/563670\/revisions\/570420"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=563670"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=563670"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=563670"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=563670"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=563670"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=563670"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=563670"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=563670"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=563670"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=563670"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=563670"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=563670"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=563670"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=563670"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=563670"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=563670"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}