{"id":575775,"date":"2019-03-26T09:22:06","date_gmt":"2019-03-26T16:22:06","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=575775"},"modified":"2019-04-18T22:29:14","modified_gmt":"2019-04-19T05:29:14","slug":"multi-domain-task-completion-dialog-challenge","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multi-domain-task-completion-dialog-challenge\/","title":{"rendered":"Multi-Domain Task-Completion Dialog Challenge"},"content":{"rendered":"
This challenge intends to foster progress in two important aspects of dialog systems: dialog complexity and scaling to new domains. First, there is an increasing interest in building complex bots that span over multiple sub-domains to accomplish a complex user goal such as travel planning which may include hotel, restaurant, attraction and so on. To advance state-of-the-art technologies for handling complex dialogs, we over a timely task focusing on multi-domain end-to-end task completion dialog. Second, neural dialog systems require very large datasets to learn to output consistent and grammatically-correct sentences. This
\nmakes it extremely hard to scale out the system to new domains with limited in-domain data. With this challenge, our goal is to investigate whether sample complexity can decrease with time, i.e., if a dialog system that was trained on a large corpus can learn to converse about a new domain given a much smaller in-domain corpus.<\/p>\n","protected":false},"excerpt":{"rendered":"
This challenge intends to foster progress in two important aspects of dialog systems: dialog complexity and scaling to new domains. First, there is an increasing interest in building complex bots that span over multiple sub-domains to accomplish a complex user goal such as travel planning which may include hotel, restaurant, attraction and so on. To […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-575775","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-3-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/03\/DTSC8_multidomain_task_proposal.pdf","id":"575778","title":"dtsc8_multidomain_task_proposal","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":575778,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/03\/DTSC8_multidomain_task_proposal.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Sungjin Lee","user_id":36377,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sungjin Lee"},{"type":"user_nicename","value":"Hannes Schulz","user_id":37188,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hannes Schulz"},{"type":"user_nicename","value":"Adam Atkinson","user_id":37095,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Adam Atkinson"},{"type":"user_nicename","value":"Jianfeng Gao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianfeng Gao"},{"type":"user_nicename","value":"Kaheer Suleman","user_id":37152,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kaheer Suleman"},{"type":"user_nicename","value":"Layla El Asri","user_id":37134,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Layla El Asri"},{"type":"user_nicename","value":"Mahmoud Adada","user_id":37176,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mahmoud Adada"},{"type":"guest","value":"minlie-huang","user_id":569517,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=minlie-huang"},{"type":"user_nicename","value":"Shikhar Sharma","user_id":36557,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shikhar Sharma"},{"type":"user_nicename","value":"Wendy Tay","user_id":37200,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wendy Tay"},{"type":"user_nicename","value":"Xiujun Li","user_id":36287,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiujun Li"}],"msr_impact_theme":[],"msr_research_lab":[437514],"msr_event":[],"msr_group":[390593],"msr_project":[645171,569514],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":645171,"post_title":"Multi-Domain Task-Completion Dialog Challenge II","post_name":"multi-domain-task-completion-dialog-challenge-ii","post_type":"msr-project","post_date":"2020-03-25 11:19:40","post_modified":"2020-06-12 16:21:23","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/multi-domain-task-completion-dialog-challenge-ii\/","post_excerpt":"As part of the Ninth Dialog System Technology Challenge (DSTC9), \u00a0Microsoft Research and Tsinghua University are hosting Multi-domain Task-oriented Dialog Challenge II, aiming to solve two tasks in the multi-domain task completion setting. End-to-end Multi-domain Task Completion Dialog -- In recent years there has been an increasing interest in building complex task completion bots that span over multiple domains. In this task, participants will develop an end-to-end dialog system that receives natural language as…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/645171"}]}},{"ID":569514,"post_title":"Multi-Domain Task-Completion Dialog Challenge","post_name":"multi-domain-task-completion-dialog-challenge","post_type":"msr-project","post_date":"2019-02-24 10:44:56","post_modified":"2019-06-17 13:49:02","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/multi-domain-task-completion-dialog-challenge\/","post_excerpt":"As part of the Eighth Dialog System Technology Challenge (DSTC8), Microsoft Research and Tsinghua University are hosting a track intended to foster progress in two important aspects of dialog systems: dialog complexity and scaling to new domains. For this DSTC8 track, there are two tasks you can compete in (see below). The challenge runs from\u00a0June 17, 2019 - October 6, 2019. Task 1 -\u00a0 There is increasing interest in building complex bots that span…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/569514"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/575775"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/575775\/revisions"}],"predecessor-version":[{"id":575781,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/575775\/revisions\/575781"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=575775"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=575775"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=575775"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=575775"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=575775"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=575775"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=575775"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=575775"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=575775"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=575775"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=575775"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=575775"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=575775"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=575775"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=575775"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=575775"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}