{"id":579928,"date":"2019-04-18T11:52:57","date_gmt":"2019-04-18T18:52:57","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=579928"},"modified":"2020-08-26T12:07:58","modified_gmt":"2020-08-26T19:07:58","slug":"contextual-bandit-algorithms-with-supervised-learning-guarantees-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/contextual-bandit-algorithms-with-supervised-learning-guarantees-2\/","title":{"rendered":"Contextual bandit algorithms with supervised learning guarantees"},"content":{"rendered":"

We address the problem of competing with any large set of N policies in the nonstochastic bandit setting, where the learner must repeatedly select among K actions but observes only the reward of the chosen action.<\/p>\n

We present a modi\ufb01cation of the Exp4 algorithm of Auer et al. [2], called Exp4.P, which with high probability incurs regret at most O(\u221aKT lnN). Such a bound does not hold for Exp4 due to the large variance of the importance-weighted estimates used in the algorithm. The new algorithm is tested empirically in a large-scale, real-world dataset. For the stochastic version of the problem, we can use Exp4.P as a subroutine to compete with a possibly in\ufb01nite set of policies of VCdimension d while incurring regret at most O(\u221aTdlnT) with high probability.<\/p>\n

These guarantees improve on those of all previous algorithms, whether in a stochastic or adversarial environment, and bring us closer to providing guarantees for this setting that are comparable to those in standard supervised learning.<\/p>\n","protected":false},"excerpt":{"rendered":"

We address the problem of competing with any large set of N policies in the nonstochastic bandit setting, where the learner must repeatedly select among K actions but observes only the reward of the chosen action. We present a modi\ufb01cation of the Exp4 algorithm of Auer et al. [2], called Exp4.P, which with high probability […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-579928","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-10-27","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Arti\ufb01cial Intelligence and Statistics","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/proceedings.mlr.press\/v15\/beygelzimer11a\/beygelzimer11a.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Alina Beygelzimer","user_id":0,"rest_url":false},{"type":"user_nicename","value":"John Langford","user_id":32204,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=John Langford"},{"type":"text","value":"Lihong Li","user_id":0,"rest_url":false},{"type":"text","value":"Lev Reyzin","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Robert Schapire","user_id":33549,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Robert Schapire"}],"msr_impact_theme":[],"msr_research_lab":[199571],"msr_event":[],"msr_group":[144902,395930],"msr_project":[568491],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":568491,"post_title":"Real World Reinforcement Learning","post_name":"real-world-reinforcement-learning","post_type":"msr-project","post_date":"2019-05-03 10:02:09","post_modified":"2024-01-16 11:11:48","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/real-world-reinforcement-learning\/","post_excerpt":"The mission of Real World Reinforcement Learning (Real-World RL) team is to develop learning methods, from foundations to real world applications, to empower people and organizations to make better decisions. The research enables the next generation of machine learning using interactive reinforcement-based approaches to solve real-world problems.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/568491"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/579928"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/579928\/revisions"}],"predecessor-version":[{"id":579931,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/579928\/revisions\/579931"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=579928"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=579928"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=579928"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=579928"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=579928"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=579928"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=579928"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=579928"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=579928"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=579928"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=579928"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=579928"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=579928"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=579928"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=579928"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=579928"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}