{"id":581830,"date":"2019-04-26T15:42:46","date_gmt":"2019-04-26T22:42:46","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=581830"},"modified":"2019-04-29T14:18:11","modified_gmt":"2019-04-29T21:18:11","slug":"speculative-distributed-csv-data-parsing-for-big-data-analytics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/speculative-distributed-csv-data-parsing-for-big-data-analytics\/","title":{"rendered":"Speculative Distributed CSV Data Parsing for Big Data Analytics"},"content":{"rendered":"

There has been a recent flurry of interest in providing query capability on raw data in today\u2019s big data systems. These raw data must be parsed before processing or use in analytics. Thus, a fundamental challenge in distributed big data systems is that of efficient parallel parsing of raw data. The difficulties come from the inherent ambiguity while independently parsing chunks of raw data without knowing the context of these chunks. Specifically, it can be difficult to find the beginnings and ends of fields and records in these chunks of raw data. To parallelize parsing, this paper proposes a speculation-based approach for the CSV format, arguably the most commonly used raw data format. Due to the syntactic and statistical properties of the format, speculative parsing rarely fails and therefore parsing is efficiently parallelized in a distributed setting. Our speculative approach is also robust, meaning that it can reliably detect syntax errors in CSV data. We experimentally evaluate the speculative, distributed parsing approach in Apache Spark using more than 11,000 real-world datasets, and show that our parser produces significant performance benefits over existing methods.<\/p>\n","protected":false},"excerpt":{"rendered":"

There has been a recent flurry of interest in providing query capability on raw data in today\u2019s big data systems. These raw data must be parsed before processing or use in analytics. Thus, a fundamental challenge in distributed big data systems is that of efficient parallel parsing of raw data. The difficulties come from the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-581830","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/04\/chunker-sigmod19.pdf","id":"581833","title":"chunker-sigmod19","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":581833,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/04\/chunker-sigmod19.pdf"}],"msr-author-ordering":[{"type":"text","value":"Chang Ge","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yinan Li","user_id":35012,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yinan Li"},{"type":"text","value":"Eric Eilebrecht","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Badrish Chandramouli","user_id":31166,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Badrish Chandramouli"},{"type":"user_nicename","value":"Donald Kossmann","user_id":31664,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Donald Kossmann"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[957177],"msr_project":[967230],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":967230,"post_title":"Query Acceleration for Data Lakes","post_name":"query-acceleration-for-data-lakes","post_type":"msr-project","post_date":"2023-11-08 16:46:43","post_modified":"2023-11-08 16:46:45","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/query-acceleration-for-data-lakes\/","post_excerpt":"Accelerating query processing on open data formats As businesses become more data-driven, there is an increasing interest in adopting data lakes (e.g., Microsoft Fabric) in large enterprises. A data lake is a large storage repository that stores a vast amount of data in a variety of open data formats, making it accessible for all use cases (e.g., AI\/data science\/BI\/reporting) that have arisen or could arise. This includes text-based raw data formats such as CSV and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/967230"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/581830"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/581830\/revisions"}],"predecessor-version":[{"id":582352,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/581830\/revisions\/582352"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=581830"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=581830"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=581830"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=581830"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=581830"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=581830"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=581830"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=581830"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=581830"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=581830"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=581830"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=581830"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=581830"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=581830"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=581830"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=581830"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}