{"id":589525,"date":"2020-02-18T14:18:59","date_gmt":"2020-02-18T21:35:54","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=589525"},"modified":"2022-01-21T11:27:06","modified_gmt":"2022-01-21T19:27:06","slug":"label-super-resolution-networks","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/label-super-resolution-networks\/","title":{"rendered":"Label super-resolution networks"},"content":{"rendered":"

We present a deep learning-based method for super-resolving coarse (low-resolution) labels assigned to groups of image pixels into pixel-level (high-resolution) labels, given the joint distribution between those low- and high-resolution labels. This method involves a novel loss function that minimizes the distance between a distribution determined by a set of model outputs and the corresponding distribution given by low-resolution labels over the same set of outputs. This setup does not require that the high-resolution classes match the low-resolution classes and can be used in high-resolution semantic segmentation tasks where high-resolution labeled data is not available. Furthermore, our proposed method is able to utilize both data with low-resolution labels and any available high-resolution labels, which we show improves performance compared to a network trained only with the same amount of high-resolution data. We test our proposed algorithm in a challenging land cover mapping task to super-resolve labels at a 30m resolution to a separate set of labels at a 1m resolution. We compare our algorithm with models that are trained on high-resolution data and show that 1) we can achieve similar performance using only low-resolution data; and 2) we can achieve better performance when we incorporate a small amount of high-resolution data in our training. We also test our approach on a medical imaging problem, resolving low-resolution probability maps into high-resolution segmentation of lymphocytes with accuracy equal to that of fully supervised models.<\/p>\n","protected":false},"excerpt":{"rendered":"

We present a deep learning-based method for super-resolving coarse (low-resolution) labels assigned to groups of image pixels into pixel-level (high-resolution) labels, given the joint distribution between those low- and high-resolution labels. This method involves a novel loss function that minimizes the distance between a distribution determined by a set of model outputs and the corresponding […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562,198583],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,246691,246658,257092,256063,248866,246682,253252,247783,256360,257509],"msr-conference":[259120],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-589525","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-research-area-ecology-environment","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-computer-science","msr-field-of-study-deep-learning","msr-field-of-study-function-mathematics","msr-field-of-study-image-mathematics","msr-field-of-study-joint-probability-distribution","msr-field-of-study-pattern-recognition","msr-field-of-study-pixel","msr-field-of-study-segmentation","msr-field-of-study-set-abstract-data-type","msr-field-of-study-task-computing"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-9-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/openreview.net\/pdf?id=rkxwShA9Ym","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"kolya-malkin","user_id":589639,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=kolya-malkin"},{"type":"user_nicename","value":"Caleb Robinson","user_id":39606,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Caleb Robinson"},{"type":"guest","value":"le-hou","user_id":589645,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=le-hou"},{"type":"guest","value":"rachel-soobitsky","user_id":814573,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rachel-soobitsky"},{"type":"guest","value":"jacob-czawlytko","user_id":814576,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jacob-czawlytko"},{"type":"guest","value":"dimitris-samaras","user_id":814579,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dimitris-samaras"},{"type":"guest","value":"joel-h-saltz","user_id":814582,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=joel-h-saltz"},{"type":"user_nicename","value":"Lucas Joppa","user_id":32751,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lucas Joppa"},{"type":"user_nicename","value":"Nebojsa Jojic","user_id":32384,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nebojsa Jojic"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[571356],"msr_group":[768895],"msr_project":[589504],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":589504,"post_title":"Land Cover Mapping","post_name":"land-cover-mapping","post_type":"msr-project","post_date":"2020-02-18 17:14:21","post_modified":"2022-03-21 13:03:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/land-cover-mapping\/","post_excerpt":"Our land cover mapping work uses computer vision to accelerate the process of turning remote sensing data into land use and land cover information, so that environmental scientists and geospatial analysts can spend less time drawing polygons, and more time planning conservation.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/589504"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/589525"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/589525\/revisions"}],"predecessor-version":[{"id":814588,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/589525\/revisions\/814588"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=589525"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=589525"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=589525"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=589525"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=589525"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=589525"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=589525"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=589525"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=589525"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=589525"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=589525"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=589525"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=589525"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=589525"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=589525"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=589525"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}