{"id":596290,"date":"2019-07-02T22:23:34","date_gmt":"2019-07-03T05:23:34","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=596290"},"modified":"2019-07-02T22:23:34","modified_gmt":"2019-07-03T05:23:34","slug":"neugraph-parallel-deep-neural-network-computation-on-large-graphs","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/neugraph-parallel-deep-neural-network-computation-on-large-graphs\/","title":{"rendered":"NeuGraph: Parallel Deep Neural Network Computation on Large Graphs"},"content":{"rendered":"

Recent deep learning models have moved beyond low dimensional regular grids such as image, video, and speech, to high-dimensional graph-structured data, such as social networks, e-commerce user-item graphs, and knowledge graphs. This evolution has led to large graph-based neural network models that go beyond what existing deep learning frameworks or graph computing systems are designed for. We present NeuGraph, a new framework that bridges the graph and dataflow models to support efficient and scalable parallel neural network computation on graphs. NeuGraph introduces graph computation optimizations into the management of data partitioning, scheduling, and parallelism in dataflow-based deep learning frameworks. Our evaluation shows that, on small graphs that can fit in a single GPU, NeuGraph outperforms state-of-the-art implementations by a significant margin, while scaling to large real-world graphs that none of the existing frameworks can handle directly with GPUs.<\/p>\n

(<\/span>Please stay <\/span>tuned <\/span>for <\/span>further <\/span>updates.<\/span><\/em>)<\/span><\/p>\n","protected":false},"excerpt":{"rendered":"

Recent deep learning models have moved beyond low dimensional regular grids such as image, video, and speech, to high-dimensional graph-structured data, such as social networks, e-commerce user-item graphs, and knowledge graphs. This evolution has led to large graph-based neural network models that go beyond what existing deep learning frameworks or graph computing systems are designed […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-596290","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-7-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/atc19\/presentation\/ma","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":596299,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/07\/neugraph_atc19.pdf"}],"msr-author-ordering":[{"type":"text","value":"Lingxiao Ma","user_id":0,"rest_url":false},{"type":"text","value":"Zhi Yang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Youshan Miao","user_id":35038,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Youshan Miao"},{"type":"user_nicename","value":"Jilong Xue","user_id":36987,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jilong Xue"},{"type":"user_nicename","value":"Ming Wu","user_id":32960,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ming Wu"},{"type":"user_nicename","value":"Lidong Zhou","user_id":32673,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lidong Zhou"},{"type":"text","value":"Yafei Dai","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[920469,922377,510017],"msr_project":[555282,170955],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":555282,"post_title":"Deep Learning Compiler and Optimizer","post_name":"deep-learning-compiler-and-optimizer","post_type":"msr-project","post_date":"2018-12-04 18:10:52","post_modified":"2023-07-10 03:41:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/deep-learning-compiler-and-optimizer\/","post_excerpt":"Project Overview This project aims to build a deep learning compiler and optimizer infrastructure that can provide automatic scalability and efficiency optimization for distributed and local execution.\u00a0 Overall, this stack covers two types of general optimizations: fast distributed training over large-scale servers and efficient local execution on various hardware devices.\u00a0 Currently, our optimizations focus on many different parts of the system stack, such as fast distributed training over RDMA, automatic computation placement across devices, automatic…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/555282"}]}},{"ID":170955,"post_title":"Graph Storage and Analysis","post_name":"temporal-graph-storage-and-analysis-of-social-data","post_type":"msr-project","post_date":"2012-05-17 23:28:59","post_modified":"2020-04-20 22:48:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/temporal-graph-storage-and-analysis-of-social-data\/","post_excerpt":"An explosion of user-generated data from online social networks motivates analysis to extract deep insights from this data's graph at scale, even of social, temporal, spatial, and topical connections. We are building systems to enable storage and analysis of such graphs that considers characteristics such as evolution over time when trending topics or social activities change. We also leverage graph computation techniques to accelerate traditional machine learning tasks.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170955"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/596290"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/596290\/revisions"}],"predecessor-version":[{"id":596296,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/596290\/revisions\/596296"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=596290"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=596290"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=596290"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=596290"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=596290"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=596290"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=596290"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=596290"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=596290"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=596290"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=596290"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=596290"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=596290"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=596290"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=596290"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=596290"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}