{"id":600843,"date":"2019-08-26T21:10:07","date_gmt":"2019-08-27T04:10:07","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=600843"},"modified":"2020-04-13T17:02:51","modified_gmt":"2020-04-14T00:02:51","slug":"microsoft-icecaps-an-open-source-toolkit-for-conversation-modeling-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/microsoft-icecaps-an-open-source-toolkit-for-conversation-modeling-2\/","title":{"rendered":"Microsoft Icecaps: An Open-Source Toolkit for Conversation Modeling"},"content":{"rendered":"

The Intelligent Conversation Engine: Code and Pre-trained Systems (Microsoft Icecaps) is an upcoming open-source natural language processing repository. Icecaps wraps TensorFlow functionality in a modular component-based architecture, presenting an intuitive and flexible paradigm for constructing sophisticated learning setups. Capabilities include multi-task learning between models with shared parameters, upgraded language model decoding features, a range of built-in architectures, and a user-friendly data processing pipeline. The system is targeted toward conversational tasks, exploring diverse response generation, coherence, and knowledge grounding. Icecaps also provides pre-trained conversational models that can be either used directly or loaded for fine-tuning or bootstrapping other models; these models power an online demo of our framework. (These pre-trained models and demo will be included in a future update of Icecaps.)<\/p>\n","protected":false},"excerpt":{"rendered":"

The Intelligent Conversation Engine: Code and Pre-trained Systems (Microsoft Icecaps) is an upcoming open-source natural language processing repository. Icecaps wraps TensorFlow functionality in a modular component-based architecture, presenting an intuitive and flexible paradigm for constructing sophisticated learning setups. Capabilities include multi-task learning between models with shared parameters, upgraded language model decoding features, a range of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-600843","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-7-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P19-3021","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Vighnesh Leonardo Shiv","user_id":38166,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Vighnesh Leonardo Shiv"},{"type":"user_nicename","value":"Chris Quirk","user_id":31430,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chris Quirk"},{"type":"user_nicename","value":"Anshuman Suri","user_id":38028,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Anshuman Suri"},{"type":"user_nicename","value":"Xiang Gao","user_id":38287,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiang Gao"},{"type":"text","value":"Khuram Shahid","user_id":0,"rest_url":false},{"type":"text","value":"Nithya Govindarajan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yizhe Zhang","user_id":37685,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yizhe Zhang"},{"type":"user_nicename","value":"Jianfeng Gao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianfeng Gao"},{"type":"user_nicename","value":"Michel Galley","user_id":32887,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Michel Galley"},{"type":"user_nicename","value":"Chris Brockett","user_id":31423,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chris Brockett"},{"type":"user_nicename","value":"Tulasi Menon","user_id":38061,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tulasi Menon"},{"type":"user_nicename","value":"Bill Dolan","user_id":31229,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bill Dolan"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144736,644373],"msr_project":[604608],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":604608,"post_title":"Microsoft Icecaps","post_name":"microsoft-icecaps","post_type":"msr-project","post_date":"2019-08-29 10:40:23","post_modified":"2019-11-05 11:51:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/microsoft-icecaps\/","post_excerpt":"With natural language processing rapidly increasing in popularity, more and more tools have become available to the public to build large systems. Some of these tools are intended for general-purpose NLP, while others focus on specific domains such as language modeling and text generation. However, few are designed to target conversational scenarios and the specific needs they entail. Microsoft Icecaps was created to offer researchers and developers an open-source toolkit with a focus on conversational…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/604608"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/600843"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/600843\/revisions"}],"predecessor-version":[{"id":605652,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/600843\/revisions\/605652"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=600843"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=600843"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=600843"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=600843"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=600843"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=600843"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=600843"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=600843"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=600843"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=600843"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=600843"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=600843"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=600843"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=600843"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=600843"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=600843"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}