{"id":603384,"date":"2019-08-14T00:46:47","date_gmt":"2019-08-14T07:46:47","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=603384"},"modified":"2019-08-14T00:46:47","modified_gmt":"2019-08-14T07:46:47","slug":"fanda-a-novel-approach-to-perform-follow-up-query-analysis","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/fanda-a-novel-approach-to-perform-follow-up-query-analysis\/","title":{"rendered":"FANDA: A Novel Approach to Perform Follow-up Query Analysis"},"content":{"rendered":"

Recent work on Natural Language Interfaces to Databases (NLIDB)\u00a0 has\u00a0 attracted\u00a0 considerable\u00a0 attention.\u00a0 NLIDB\u00a0 allow users to search databases using natural language instead of SQL-like query languages. While saving the users from having to learn query languages, multi-turn interaction with NLIDB usually involves multiple queries where contextual information is vital to understand the users\u2019 query intents.
\nIn this paper, we address a typical contextual understanding problem, termed as follow-up query analysis. In spite of its ubiquity, follow-up query analysis has not been well studied due to two primary obstacles: the multifarious nature of follow-up query scenarios and the lack of high-quality datasets. Our work summarizes typical follow-up query scenarios and provides a new FollowUp dataset with 1000 query triples\u00a0 on\u00a0 120\u00a0 tables.\u00a0 Moreover,\u00a0 we\u00a0 propose\u00a0 a\u00a0 novel\u00a0 approach FANDA, which takes into account the structures of queries and employs a ranking model with weakly supervised max-margin learning.
\nThe experimental results on FollowUp demonstrate the superiority of FANDA\u00a0 over multiple baselines across multiple metrics.<\/p>\n","protected":false},"excerpt":{"rendered":"

Recent work on Natural Language Interfaces to Databases (NLIDB)\u00a0 has\u00a0 attracted\u00a0 considerable\u00a0 attention.\u00a0 NLIDB\u00a0 allow users to search databases using natural language instead of SQL-like query languages. While saving the users from having to learn query languages, multi-turn interaction with NLIDB usually involves multiple queries where contextual information is vital to understand the users\u2019 query […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-603384","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-1-27","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/08\/AAAI-2019-FANDA-A-Novel-Approach-to-Perform-Follow-up-Query-Analysis.pdf","id":"603390","title":"aaai-2019-fanda-a-novel-approach-to-perform-follow-up-query-analysis","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":603390,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/08\/AAAI-2019-FANDA-A-Novel-Approach-to-Perform-Follow-up-Query-Analysis.pdf"}],"msr-author-ordering":[{"type":"text","value":"Qian LIU","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bei Chen","user_id":36756,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bei Chen"},{"type":"user_nicename","value":"Jian-Guang Lou","user_id":32337,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jian-Guang Lou"},{"type":"text","value":"Ge JIN","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Dongmei Zhang","user_id":31665,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dongmei Zhang"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[],"msr_project":[578947],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":578947,"post_title":"Natural Language Interface for Data Analytics","post_name":"conversational-data-analytics","post_type":"msr-project","post_date":"2019-04-15 15:23:36","post_modified":"2022-03-22 02:54:11","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/conversational-data-analytics\/","post_excerpt":"In this project, we try to research and develop a conversation technology for data analytics scenarios. By using our technology, given a relational database or a data table, a user can explore the data table and insights from the dataset through natural language conversation. Our system can understand user\u2019s natural language questions and convert the questions into some analysis programs. The programs can be executed on the relational database (or the data table) to obtain…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/578947"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/603384"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/603384\/revisions"}],"predecessor-version":[{"id":603396,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/603384\/revisions\/603396"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=603384"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=603384"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=603384"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=603384"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=603384"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=603384"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=603384"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=603384"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=603384"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=603384"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=603384"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=603384"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=603384"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=603384"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=603384"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=603384"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}