{"id":605715,"date":"2019-08-27T14:07:50","date_gmt":"2019-08-27T21:07:50","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=605715"},"modified":"2019-08-27T16:25:36","modified_gmt":"2019-08-27T23:25:36","slug":"recognizing-f-formations-in-the-open-world","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/recognizing-f-formations-in-the-open-world\/","title":{"rendered":"Recognizing F-Formations in the Open World"},"content":{"rendered":"

A key skill for social robots in the wild will be to understand the structure and dynamics of conversational groups in order to fluidly participate in them. Social scientists have long studied the rich complexity underlying such focused encounters, or F-formations. However, current state-of-the-art algorithms that robots might use to recognize F-formations are highly heuristic and quite brittle. In this report, we explore a data-driven approach to detect F-formations from sets of tracked human positions and orientations, trained and evaluated on two openly available human-only datasets and a small human-robot dataset that we collected. We also discuss the potential for further computational characterization of F-formations beyond simply detecting their occurrence.<\/p>\n","protected":false},"excerpt":{"rendered":"

A key skill for social robots in the wild will be to understand the structure and dynamics of conversational groups in order to fluidly participate in them. Social scientists have long studied the rich complexity underlying such focused encounters, or F-formations. However, current state-of-the-art algorithms that robots might use to recognize F-formations are highly heuristic […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-605715","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-3-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ieeexplore.ieee.org\/document\/8673233","label_id":"243109","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/08\/Recognizing-F-Formations-in-the-Open-World.pdf","id":"605781","title":"recognizing-f-formations-in-the-open-world-2","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":605781,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2019\/08\/Recognizing-F-Formations-in-the-Open-World.pdf"}],"msr-author-ordering":[{"type":"text","value":"Hooman Hedayati","user_id":0,"rest_url":false},{"type":"text","value":"Daniel Szafir","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sean Andrist","user_id":36443,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sean Andrist"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[396845],"msr_project":[390800],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":390800,"post_title":"Situated Interaction","post_name":"situated-interaction","post_type":"msr-project","post_date":"2017-07-07 12:00:28","post_modified":"2021-04-06 15:07:38","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/situated-interaction\/","post_excerpt":"The situated interaction research effort aims to enable computers to reason more deeply about their surroundings, and engage in fluid interaction with humans in physically situated settings. When people interact with each other, they engage in a rich, highly coordinated, mixed-initiative process, regulated through both verbal and non-verbal channels. In contrast, while their perceptual abilities are improving, computers are still unaware of their physical surroundings and of the \u201cphysics\u201d of human interaction. Current human-computer interaction…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/390800"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/605715"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/605715\/revisions"}],"predecessor-version":[{"id":605718,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/605715\/revisions\/605718"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=605715"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=605715"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=605715"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=605715"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=605715"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=605715"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=605715"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=605715"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=605715"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=605715"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=605715"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=605715"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=605715"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=605715"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=605715"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=605715"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}