{"id":626151,"date":"2019-12-06T12:39:18","date_gmt":"2019-12-06T20:39:18","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=626151"},"modified":"2021-09-03T16:25:28","modified_gmt":"2021-09-03T23:25:28","slug":"orthogonal-random-forest-for-causal-inference-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/orthogonal-random-forest-for-causal-inference-2\/","title":{"rendered":"Orthogonal Random Forest for Causal Inference"},"content":{"rendered":"
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)\u2014a \ufb02exible nonparametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local `1-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.<\/p>\n","protected":false},"excerpt":{"rendered":"
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)\u2014a \ufb02exible nonparametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-626151","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-9-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/1806.03467.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Miruna Oprescu","user_id":37353,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Miruna Oprescu"},{"type":"user_nicename","value":"Vasilis Syrgkanis","user_id":34499,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Vasilis Syrgkanis"},{"type":"text","value":"Zhiwei Steven Wu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[656316],"msr_project":[656325,332666],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":656325,"post_title":"EconML","post_name":"econml","post_type":"msr-project","post_date":"2020-06-02 09:40:48","post_modified":"2022-02-24 07:11:27","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/econml\/","post_excerpt":"EconML\u00a0is an open source Python package developed by the ALICE team at Microsoft Research that applies the power of machine learning techniques to estimate individualized causal responses from observational or experimental data. The suite of estimation methods provided in EconML represents the latest advances in causal machine learning. By incorporating individual machine learning steps into interpretable causal models, these methods improve the reliability of what-if predictions and make causal analysis quicker and easier for a…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/656325"}]}},{"ID":332666,"post_title":"ALICE","post_name":"alice","post_type":"msr-project","post_date":"2016-12-08 05:45:31","post_modified":"2020-04-14 07:52:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/alice\/","post_excerpt":"ALICE Automated Learning and Intelligence for Causation and Economics Alice is a project to direct Artificial Intelligence towards economic decision making. We are building tools that combine state-of-the-art machine learning with econometrics \u2013 the measurement of economic systems -- in order to bring automation to economic decision making. The heart of this project is a striving to measure causation: if you want to understand or make policy decisions in a complex economy, you need to…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/332666"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626151"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626151\/revisions"}],"predecessor-version":[{"id":771895,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626151\/revisions\/771895"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=626151"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=626151"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=626151"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=626151"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=626151"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=626151"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=626151"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=626151"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=626151"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=626151"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=626151"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=626151"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=626151"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=626151"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=626151"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=626151"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}