{"id":626160,"date":"2019-12-06T12:42:30","date_gmt":"2019-12-06T20:42:30","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=626160"},"modified":"2019-12-06T12:42:30","modified_gmt":"2019-12-06T20:42:30","slug":"orthogonal-statistical-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/orthogonal-statistical-learning\/","title":{"rendered":"Orthogonal Statistical Learning"},"content":{"rendered":"
We provide excess risk guarantees for statistical learning in a setting where the population risk with respect to which we evaluate the target model depends on an unknown model that must be to be estimated from data (a \u201cnuisance model\u201d). We analyze a two-stage sample splitting meta-algorithm that takes as input two arbitrary estimation algorithms: one for the target model and one for the nuisance model. We show that if the population risk satis\ufb01es a condition called Neyman orthogonality, the impact of the nuisance estimation error on the excess risk bound achieved by the meta-algorithm is of second order. Our theorem is agnostic to the particular algorithms used for the target and nuisance and only makes an assumption on their individual performance. This enables the use of a plethora of existing results from statistical learning and machine learning literature to give new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather than parameter estimation, we can give guarantees under weaker assumptions than in previous works and accommodate the case where the target parameter belongs to a complex nonparametric class. We characterize conditions on the metric entropy such that oracle rates\u2014rates of the same order as if we knew the nuisance model\u2014are achieved. We also analyze the rates achieved by speci\ufb01c estimation algorithms such as variance-penalized empirical risk minimization, neural network estimation and sparse high-dimensional linear model estimation. We highlight the applicability of our results in four settings of central importance in the literature: 1) heterogeneous treatment e\ufb00ect estimation, 2) o\ufb04ine policy optimization, 3) domain adaptation, and 4) learning with missing data.<\/span><\/p>\n","protected":false},"excerpt":{"rendered":" We provide excess risk guarantees for statistical learning in a setting where the population risk with respect to which we evaluate the target model depends on an unknown model that must be to be estimated from data (a \u201cnuisance model\u201d). We analyze a two-stage sample splitting meta-algorithm that takes as input two arbitrary estimation algorithms: […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-626160","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-3-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"arXiv","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/1901.09036.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Vasilis Syrgkanis","user_id":34499,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Vasilis Syrgkanis"},{"type":"text","value":"Dylan Foster","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[656316],"msr_project":[656325,332666],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":656325,"post_title":"EconML","post_name":"econml","post_type":"msr-project","post_date":"2020-06-02 09:40:48","post_modified":"2022-02-24 07:11:27","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/econml\/","post_excerpt":"EconML\u00a0is an open source Python package developed by the ALICE team at Microsoft Research that applies the power of machine learning techniques to estimate individualized causal responses from observational or experimental data. The suite of estimation methods provided in EconML represents the latest advances in causal machine learning. By incorporating individual machine learning steps into interpretable causal models, these methods improve the reliability of what-if predictions and make causal analysis quicker and easier for a…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/656325"}]}},{"ID":332666,"post_title":"ALICE","post_name":"alice","post_type":"msr-project","post_date":"2016-12-08 05:45:31","post_modified":"2020-04-14 07:52:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/alice\/","post_excerpt":"ALICE Automated Learning and Intelligence for Causation and Economics Alice is a project to direct Artificial Intelligence towards economic decision making. We are building tools that combine state-of-the-art machine learning with econometrics \u2013 the measurement of economic systems -- in order to bring automation to economic decision making. The heart of this project is a striving to measure causation: if you want to understand or make policy decisions in a complex economy, you need to…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/332666"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626160"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626160\/revisions"}],"predecessor-version":[{"id":626163,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626160\/revisions\/626163"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=626160"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=626160"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=626160"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=626160"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=626160"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=626160"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=626160"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=626160"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=626160"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=626160"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=626160"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=626160"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=626160"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=626160"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=626160"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=626160"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}