{"id":626367,"date":"2019-12-09T11:52:41","date_gmt":"2019-12-09T19:52:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=626367"},"modified":"2021-10-17T23:03:14","modified_gmt":"2021-10-18T06:03:14","slug":"advances-in-online-audio-visual-meeting-transcription","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/advances-in-online-audio-visual-meeting-transcription\/","title":{"rendered":"Advances in Online Audio-Visual Meeting Transcription"},"content":{"rendered":"
This paper describes a system that generates speaker-annotated transcripts of meetings by using a microphone array and a 360-degree camera. The hallmark of the system is its ability to handle overlapped speech, which has been an unsolved problem in realistic settings for over a decade. We show that this problem can be addressed by using a continuous speech separation approach. In addition, we describe an online audio-visual speaker diarization method that leverages face tracking and identification, sound source localization, speaker identification, and, if available, prior speaker information for robustness to various real world challenges. All components are integrated in a meeting transcription framework called SRD, which stands for \u201cseparate, recognize, and diarize\u201d. Experimental results using recordings of natural meetings involving up to 11 attendees are reported. The continuous speech separation improves a word error rate (WER) by 16.1% compared with a highly tuned beamformer. When a complete list of meeting attendees is available, the discrepancy between WER and speaker-attributed WER is only 1.0%, indicating accurate word-to-speaker association. This increases marginally to 1.6% when 50% of the attendees are unknown to the system.<\/p>\n","protected":false},"excerpt":{"rendered":"
This paper describes a system that generates speaker-annotated transcripts of meetings by using a microphone array and a 360-degree camera. The hallmark of the system is its ability to handle overlapped speech, which has been an unsolved problem in realistic settings for over a decade. We show that this problem can be addressed by using […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062,13562,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-626367","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-computer-vision","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-12-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2019\/12\/ASRU2019-camera-ready.pdf","id":"626370","title":"asru2019-camera-ready","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":626370,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2019\/12\/ASRU2019-camera-ready.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Takuya Yoshioka","user_id":36278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Takuya Yoshioka"},{"type":"user_nicename","value":"Igor Abramovski","user_id":32085,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Igor Abramovski"},{"type":"text","value":"Cem Aksoylar","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Zhuo Chen","user_id":38589,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhuo Chen"},{"type":"text","value":"Moshe David","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Dimitrios Dimitriadis","user_id":37521,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dimitrios Dimitriadis"},{"type":"user_nicename","value":"Yifan Gong","user_id":34994,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yifan Gong"},{"type":"user_nicename","value":"Ilya Gurvich","user_id":32098,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ilya Gurvich"},{"type":"user_nicename","value":"Xuedong Huang","user_id":34869,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xuedong Huang"},{"type":"user_nicename","value":"Yan Huang","user_id":34965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yan Huang"},{"type":"user_nicename","value":"Aviv Hurvitz","user_id":31151,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aviv Hurvitz"},{"type":"user_nicename","value":"Li Jiang","user_id":32678,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Li Jiang"},{"type":"text","value":"Sharon Koubi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Eyal Krupka","user_id":31771,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Eyal Krupka"},{"type":"user_nicename","value":"Ido Leichter","user_id":32081,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ido Leichter"},{"type":"text","value":"Changliang Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sarangarajan Parthasarathy","user_id":33525,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sarangarajan Parthasarathy"},{"type":"user_nicename","value":"Alon Vinnikov","user_id":30965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Alon Vinnikov"},{"type":"user_nicename","value":"Lingfeng Wu","user_id":32687,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lingfeng Wu"},{"type":"user_nicename","value":"Xiong Xiao","user_id":38778,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiong Xiao"},{"type":"user_nicename","value":"Wayne Xiong","user_id":34811,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wayne Xiong"},{"type":"user_nicename","value":"Huaming Wang","user_id":32052,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Huaming Wang"},{"type":"user_nicename","value":"Zhenghao (Hao) Wang","user_id":35138,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhenghao (Hao) Wang"},{"type":"text","value":"Jun Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yong Zhao","user_id":35042,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yong Zhao"},{"type":"text","value":"Tianyan Zhou","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144911,216334,664548,783091],"msr_project":[585154],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":585154,"post_title":"Project Denmark","post_name":"project-denmark","post_type":"msr-project","post_date":"2019-05-09 13:13:15","post_modified":"2020-11-12 13:43:43","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-denmark\/","post_excerpt":"The goal of Project Denmark is to move beyond the need for traditional microphone arrays, such as those supported by Microsoft\u2019s Speech Devices SDK, to achieve high-quality capture of meeting conversations.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/585154"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626367","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626367\/revisions"}],"predecessor-version":[{"id":626376,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/626367\/revisions\/626376"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=626367"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=626367"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=626367"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=626367"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=626367"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=626367"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=626367"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=626367"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=626367"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=626367"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=626367"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=626367"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=626367"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=626367"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=626367"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=626367"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}