{"id":630567,"date":"2020-01-11T07:18:52","date_gmt":"2020-01-11T15:18:52","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=630567"},"modified":"2020-02-03T15:00:40","modified_gmt":"2020-02-03T23:00:40","slug":"toward-activity-discovery-in-the-personal-web","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/toward-activity-discovery-in-the-personal-web\/","title":{"rendered":"Toward Activity Discovery in the Personal Web"},"content":{"rendered":"

Individuals’ personal information collections (their emails, files, appointments, web searches, contacts, etc) offer a wealth of insights into the organization and structure of their everyday lives. In this paper we address the task of learning representations of personal information items to capture individuals’ ongoing activities, such as projects and tasks: Such representations can be used in activity-centric applications like personal assistants, email clients, and productivity tools to help people better manage their data and time.\u00a0 We propose a graph-based approach that leverages the inherent interconnected structure of personal information collections, and derive efficient, exact techniques to incrementally update representations as new data arrive. We demonstrate the strengths of our graph-based representations against competitive baselines in a novel intrinsic rating task and an extrinsic recommendation task.<\/p>\n","protected":false},"excerpt":{"rendered":"

Individuals’ personal information collections (their emails, files, appointments, web searches, contacts, etc) offer a wealth of insights into the organization and structure of their everyday lives. In this paper we address the task of learning representations of personal information items to capture individuals’ ongoing activities, such as projects and tasks: Such representations can be used […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-630567","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-2-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/01\/wsdm-personal-web-activity-safavi.pdf","id":"634713","title":"wsdm-personal-web-activity-safavi","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":634713,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/02\/wsdm-personal-web-activity-safavi.pdf"}],"msr-author-ordering":[{"type":"text","value":"Tara Safavi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Adam Fourney","user_id":30820,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Adam Fourney"},{"type":"user_nicename","value":"Robert Sim","user_id":36650,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Robert Sim"},{"type":"text","value":"Marcin Juraszek","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Shane Williams","user_id":33593,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shane Williams"},{"type":"text","value":"Ned Friend","user_id":0,"rest_url":false},{"type":"text","value":"Danai Koutra","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Paul Bennett","user_id":33201,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Paul Bennett"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144672,493619],"msr_project":[394790],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":394790,"post_title":"Contextually Intelligent Assistants","post_name":"contextually-intelligent-assistants","post_type":"msr-project","post_date":"2017-07-05 19:05:59","post_modified":"2022-08-15 09:30:03","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/contextually-intelligent-assistants\/","post_excerpt":"The Contextually Intelligent Assistants project makes progress toward the type of contextual intelligence needed for next-generation assistants.\u00a0 It does this by improving the state-of-the-art in understanding task intent from task descriptions.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/394790"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630567"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630567\/revisions"}],"predecessor-version":[{"id":630573,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630567\/revisions\/630573"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=630567"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=630567"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=630567"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=630567"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=630567"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=630567"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=630567"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=630567"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=630567"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=630567"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=630567"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=630567"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=630567"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=630567"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=630567"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=630567"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}