{"id":630600,"date":"2020-01-11T08:13:47","date_gmt":"2020-01-11T16:13:47","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=630600"},"modified":"2022-12-06T09:37:06","modified_gmt":"2022-12-06T17:37:06","slug":"transformer-xh-multi-evidence-reasoning-with-extra-hop-attention","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/transformer-xh-multi-evidence-reasoning-with-extra-hop-attention\/","title":{"rendered":"Transformer-XH: Multi-evidence Reasoning with Extra Hop Attention"},"content":{"rendered":"
Transformers have obtained significant success modeling natural language as a sequence of text tokens. However, in many real world scenarios, textual data inherently exhibits structures beyond a linear sequence such as trees and graphs; many tasks require reasoning with evidence scattered across multiple pieces of texts. This paper presents Transformer-XH, which uses eXtra Hop attention to enable the intrinsic modeling of structured texts in a fully data-driven way. Its new attention mechanism naturally \u201chops\u201d across the connected text sequences in addition to attending over tokens within each sequence. Thus, Transformer-XH better conducts multi-evidence reasoning by propagating information between multiple documents, constructing global contextualized representations, and jointly reasoning over multiple pieces of evidence. On multi-hop question answering, Transformer-XH leads to a simpler multi-hop QA system which outperforms previous state-of-the-art on the HotpotQA FullWiki setting. On FEVER fact verification, applying Transformer-XH provides state-of-the-art accuracy and excels on claims whose verification requires multiple evidence<\/div>\n","protected":false},"excerpt":{"rendered":"

Transformers have obtained significant success modeling natural language as a sequence of text tokens. However, in many real world scenarios, textual data inherently exhibits structures beyond a linear sequence such as trees and graphs; many tasks require reasoning with evidence scattered across multiple pieces of texts. This paper presents Transformer-XH, which uses eXtra Hop attention […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-630600","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-4-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/01\/transformer_xh_multi_evidence_reasoning_with_extra_hop_attention.pdf","id":"650910","title":"transformer_xh_multi_evidence_reasoning_with_extra_hop_attention","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/openreview.net\/forum?id=r1eIiCNYwS","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":650910,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/04\/transformer_xh_multi_evidence_reasoning_with_extra_hop_attention.pdf"}],"msr-author-ordering":[{"type":"text","value":"Chen Zhao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chenyan Xiong","user_id":37821,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chenyan Xiong"},{"type":"user_nicename","value":"Corby Rosset","user_id":41997,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Corby Rosset"},{"type":"text","value":"Xia Song","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Paul Bennett","user_id":33201,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Paul Bennett"},{"type":"text","value":"Saurabh Tiwary","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[650565],"msr_group":[144672],"msr_project":[],"publication":[],"video":[],"download":[642348],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630600"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630600\/revisions"}],"predecessor-version":[{"id":630603,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/630600\/revisions\/630603"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=630600"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=630600"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=630600"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=630600"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=630600"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=630600"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=630600"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=630600"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=630600"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=630600"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=630600"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=630600"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=630600"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=630600"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=630600"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=630600"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}