{"id":638817,"date":"2020-02-23T21:11:06","date_gmt":"2020-02-24T05:09:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=638817"},"modified":"2020-02-23T21:11:07","modified_gmt":"2020-02-24T05:11:07","slug":"quiver-an-informed-storage-cache-for-deep-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/quiver-an-informed-storage-cache-for-deep-learning\/","title":{"rendered":"Quiver: An Informed Storage Cache for Deep Learning"},"content":{"rendered":"

We introduce Quiver, an informed storage cache for deep learning training (DLT) jobs in a cluster of GPUs. Quiver employs domain-specific intelligence within the caching layer, to achieve much higher efficiency compared to a generic storage cache. First, Quiver uses a secure hash-based addressing to transparently reuse cached data across multiple jobs and even multiple users operating on the same dataset. Second, by co-designing with the deep learning framework (e.g. PyTorch), Quiver employs a technique of substitutable cache hits<\/em>\u00a0to get more value from the existing contents of the cache, thus avoiding cache thrashing when cache capacity is much smaller than the working set. Third, Quiver dynamically prioritizes cache allocation to jobs that benefit the most from the caching. With a prototype implementation in PyTorch, we show that Quiver can significantly improve throughput of deep learning workloads.<\/p>\n","protected":false},"excerpt":{"rendered":"

We introduce Quiver, an informed storage cache for deep learning training (DLT) jobs in a cluster of GPUs. Quiver employs domain-specific intelligence within the caching layer, to achieve much higher efficiency compared to a generic storage cache. First, Quiver uses a secure hash-based addressing to transparently reuse cached data across multiple jobs and even multiple […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-638817","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"USENIX","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-2-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/fast20\/presentation\/kumar","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Abhishek Vijaya Kumar","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Muthian Sivathanu","user_id":36320,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Muthian Sivathanu"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[],"msr_project":[600474,968667],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":600474,"post_title":"Micro Co-design","post_name":"micro-codesign","post_type":"msr-project","post_date":"2020-02-23 21:23:12","post_modified":"2020-02-23 21:23:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/micro-codesign\/","post_excerpt":"The massive scale of cloud infrastructure services enables, and often necessitates, vertical co-design of the infrastructure stack by cloud providers. Micro\u00a0co-design is a\u00a0Minimally invasive,\u00a0Cheap, and retro-fittable approach to co-design that extracts efficiency out of existing software infrastructure layers. It does this by making lightweight changes to generic software interfaces. We are exploring micro co-design in the context of four systems: Instalytics, Astra, Gandiva, and Quiver, aimed at improving the efficiency and functionality of key infrastructure…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/600474"}]}},{"ID":968667,"post_title":"AI Infrastructure","post_name":"ai-infrastructure","post_type":"msr-project","post_date":"2023-10-04 00:44:27","post_modified":"2024-08-01 03:26:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-infrastructure\/","post_excerpt":"Towards efficient AI\/ML deployment The AI Infrastructure team at Microsoft Research India works on cutting-edge systems optimizations for improving the efficiency of a variety of AI\/ML workloads, including an emerging class of workloads, namely, serving large language models (LLMs). AI\/ML models are expensive to train and serve at scale and therefore, systems optimizations are crucial for unlocking the true potential of AI-powered applications. The key principle behind many of our projects is co-design of Systems and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/968667"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/638817"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/638817\/revisions"}],"predecessor-version":[{"id":638820,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/638817\/revisions\/638820"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=638817"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=638817"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=638817"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=638817"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=638817"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=638817"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=638817"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=638817"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=638817"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=638817"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=638817"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=638817"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=638817"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=638817"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=638817"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=638817"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}