{"id":640176,"date":"2020-02-28T00:26:30","date_gmt":"2020-02-28T08:26:30","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=640176"},"modified":"2020-02-28T00:26:31","modified_gmt":"2020-02-28T08:26:31","slug":"statistically-preconditioned-accelerated-gradient-method-for-distributed-optimization","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/statistically-preconditioned-accelerated-gradient-method-for-distributed-optimization\/","title":{"rendered":"Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization"},"content":{"rendered":"
We consider the setting of distributed empirical risk minimization where multiple machines compute the gradients in parallel and a centralized server updates the model parameters. In order to reduce the number of communications required to reach a given accuracy, we propose a preconditioned accelerated gradient method where the preconditioning is done by solving a local optimization problem over a subsampled dataset at the server. The convergence rate of the method depends on the square root of the relative condition number between the global and local loss functions. We estimate the relative condition number for linear prediction models by studying uniform concentration of the Hessians over a bounded domain, which allows us to derive improved convergence rates for existing preconditioned gradient methods and our accelerated method. Experiments on real-world datasets illustrate the benefits of acceleration in the ill-conditioned regime.<\/p>\n","protected":false},"excerpt":{"rendered":"
We consider the setting of distributed empirical risk minimization where multiple machines compute the gradients in parallel and a centralized server updates the model parameters. In order to reduce the number of communications required to reach a given accuracy, we propose a preconditioned accelerated gradient method where the preconditioning is done by solving a local […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13546],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-640176","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-2-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2020-5","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft Research","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2002.10726","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Hadrien Hendrikx","user_id":0,"rest_url":false},{"type":"edited_text","value":"Lin Xiao (lixiao)","user_id":32713,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lin Xiao (lixiao)"},{"type":"edited_text","value":"S\u00e9bastien Bubeck (sebubeck)","user_id":33570,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=S\u00e9bastien Bubeck (sebubeck)"},{"type":"text","value":"Francis Bach","user_id":0,"rest_url":false},{"type":"text","value":"Laurent Massoulie","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[663087],"msr_project":[392777],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":392777,"post_title":"Foundations of Optimization","post_name":"foundations-of-optimization","post_type":"msr-project","post_date":"2017-07-06 09:30:53","post_modified":"2018-12-04 14:12:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/foundations-of-optimization\/","post_excerpt":"Optimization methods are the engine of machine learning algorithms. Examples abound, such as training neural networks with stochastic gradient descent, segmenting images with submodular optimization, or efficiently searching a game tree with bandit algorithms. We aim to advance the mathematical foundations of both discrete and continuous optimization and to leverage these advances to develop new algorithms with a broad set of AI applications. Some of the current directions pursued by our members include convex optimization,…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/392777"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/640176"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/640176\/revisions"}],"predecessor-version":[{"id":640179,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/640176\/revisions\/640179"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=640176"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=640176"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=640176"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=640176"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=640176"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=640176"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=640176"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=640176"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=640176"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=640176"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=640176"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=640176"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=640176"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=640176"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=640176"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=640176"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}