{"id":650322,"date":"2020-04-15T18:39:45","date_gmt":"2020-04-16T01:39:45","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=650322"},"modified":"2021-01-03T17:36:00","modified_gmt":"2021-01-04T01:36:00","slug":"towards-generating-math-word-problems-from-equations-and-topics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/towards-generating-math-word-problems-from-equations-and-topics\/","title":{"rendered":"Towards Generating Math Word Problems from Equations and Topics"},"content":{"rendered":"

A math word problem is a narrative with a specific topic that provides clues to the correct equation with numerical quantities and variables therein. In this paper, we focus on the task of generating math word problems. Previous works are mainly template-based with pre-defined rules. We propose a novel neural network model to generate math word problems from the given equations and topics. First, we design a fusion mechanism to incorporate the information of both equations and topics. Second, an entity-enforced loss is introduced to ensure the relevance between the generated math problem and the equation. Automatic evaluation results show that the proposed model significantly outperforms the baseline models. In human evaluations, the math word problems generated by our model are rated as being more relevant (in terms of solvability of the given equations and relevance to topics) and natural (i.e., grammaticality, fluency) than the baseline models.<\/p>\n","protected":false},"excerpt":{"rendered":"

A math word problem is a narrative with a specific topic that provides clues to the correct equation with numerical quantities and variables therein. In this paper, we focus on the task of generating math word problems. Previous works are mainly template-based with pre-defined rules. We propose a novel neural network model to generate math […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246673,246691,248806,248809,248803,248815,248812,248341,248716],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-650322","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-artificial-neural-network","msr-field-of-study-computer-science","msr-field-of-study-fluency","msr-field-of-study-fusion-mechanism","msr-field-of-study-grammaticality","msr-field-of-study-math-problem","msr-field-of-study-narrative","msr-field-of-study-theoretical-computer-science","msr-field-of-study-word-problem-mathematics-education"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft Research Asia","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.18653\/V1\/W19-8661","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/W19-8661.pdf","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/conf\/inlg\/inlg2019.html#ZhouH19","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/W19-8661\/","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/towards-generating-math-word-problems-from-equations-and-topics\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Qingyu Zhou","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Danqing Huang","user_id":38724,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Danqing Huang"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[171492],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171492,"post_title":"SigmaDolphin: Automated Math Word Problem Solving","post_name":"sigmadolphin","post_type":"msr-project","post_date":"2015-08-15 04:11:46","post_modified":"2022-12-02 11:26:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sigmadolphin\/","post_excerpt":"Building a computer system to automatically solve math word problems written in natural language. SigmaDolphin is a project initiated in early 2013 at Microsoft Research Asia, with the primary goal of building a computer intelligent system with natural language understanding and reasoning capacities. We focus on the application of automatic problem solving, i.e., automatically solving problems (especially math word problems) written in natural language. Motivation Computer programs can complete many tasks much more effectively and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171492"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650322"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650322\/revisions"}],"predecessor-version":[{"id":715192,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650322\/revisions\/715192"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=650322"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=650322"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=650322"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=650322"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=650322"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=650322"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=650322"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=650322"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=650322"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=650322"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=650322"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=650322"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=650322"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=650322"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=650322"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=650322"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}