{"id":650343,"date":"2020-04-15T18:40:26","date_gmt":"2020-04-16T01:40:26","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=650343"},"modified":"2020-12-29T07:36:56","modified_gmt":"2020-12-29T15:36:56","slug":"neural-math-word-problem-solver-with-reinforcement-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/neural-math-word-problem-solver-with-reinforcement-learning\/","title":{"rendered":"Neural Math Word Problem Solver with Reinforcement Learning"},"content":{"rendered":"

Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the \u201ctrain-test discrepancy\u201d issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results.<\/p>\n","protected":false},"excerpt":{"rendered":"

Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-650343","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-8-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/C18-1018\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Danqing Huang","user_id":38724,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Danqing Huang"},{"type":"text","value":"Jing Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"},{"type":"text","value":"Jian Yin","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[171492],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171492,"post_title":"SigmaDolphin: Automated Math Word Problem Solving","post_name":"sigmadolphin","post_type":"msr-project","post_date":"2015-08-15 04:11:46","post_modified":"2022-12-02 11:26:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sigmadolphin\/","post_excerpt":"Building a computer system to automatically solve math word problems written in natural language. SigmaDolphin is a project initiated in early 2013 at Microsoft Research Asia, with the primary goal of building a computer intelligent system with natural language understanding and reasoning capacities. We focus on the application of automatic problem solving, i.e., automatically solving problems (especially math word problems) written in natural language. Motivation Computer programs can complete many tasks much more effectively and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171492"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650343"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650343\/revisions"}],"predecessor-version":[{"id":714367,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/650343\/revisions\/714367"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=650343"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=650343"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=650343"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=650343"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=650343"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=650343"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=650343"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=650343"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=650343"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=650343"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=650343"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=650343"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=650343"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=650343"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=650343"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=650343"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}