{"id":656556,"date":"2020-05-05T12:07:05","date_gmt":"2020-05-05T19:07:05","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=656556"},"modified":"2022-03-17T19:24:49","modified_gmt":"2022-03-18T02:24:49","slug":"meta-learning-for-few-shot-nmt-adaptation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/meta-learning-for-few-shot-nmt-adaptation\/","title":{"rendered":"Meta-Learning For Few-Shot NMT Adaptation"},"content":{"rendered":"

We present META-MT, a meta-learning approach to adapt Neural Machine Translation (NMT) systems in a few-shot setting. META-MT provides a new approach to make NMT models easily adaptable to many target domains with the minimal amount of in-domain data. We frame the adaptation of NMT systems as a meta-learning problem, where we learn to adapt to new unseen domains based on simulated offline meta-training domain adaptation tasks. We evaluate the proposed metalearning strategy on ten domains with general large scale NMT systems. We show that META-MT significantly outperforms classical domain adaptation when very few indomain examples are available. Our experiments shows that META-MT can outperform classical fine-tuning by up to 2.5 BLEU points after seeing only 4,000 translated words (300 parallel sentences).<\/p>\n","protected":false},"excerpt":{"rendered":"

We present META-MT, a meta-learning approach to adapt Neural Machine Translation (NMT) systems in a few-shot setting. META-MT provides a new approach to make NMT models easily adaptable to many target domains with the minimal amount of in-domain data. We frame the adaptation of NMT systems as a meta-learning problem, where we learn to adapt […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-656556","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-4-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"ArXiv preprint","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2004.02745.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Amr Sharaf","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Hany Hassan Awadalla","user_id":31965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hany Hassan Awadalla"},{"type":"user_nicename","value":"Hal Daum\u00e9 III","user_id":36768,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hal Daum\u00e9 III"}],"msr_impact_theme":[],"msr_research_lab":[199565,199571],"msr_event":[],"msr_group":[],"msr_project":[765364,453534],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":{"projects":[{"ID":765364,"post_title":"Project Z-Code","post_name":"project-zcode","post_type":"msr-project","post_date":"2021-08-06 19:23:22","post_modified":"2023-02-22 08:52:56","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-zcode\/","post_excerpt":"Project Z-Code, a part of Azure AI Cognitive Services,\u00a0is working within Project Turing to evolve Microsoft products with the adoption of deep learning pre-trained models.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/765364"}]}},{"ID":453534,"post_title":"Neural Machine Translation","post_name":"neural-machine-translation","post_type":"msr-project","post_date":"2018-01-10 16:38:53","post_modified":"2018-01-10 16:47:14","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/neural-machine-translation\/","post_excerpt":"We are using Neural Machine Translation (NMT) to achieve state-of-the-art translation performance. We are working on large scale \/ real-time translation systems to support high quality translation for various languages. We used LSTM Sequence-to-Sequence models. Many of our systems achieved best performance among online translation systems. The systems are widely used for text and speech translation in various scenarios and applications. https:\/\/translator.microsoft.com\/","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/453534"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/656556"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/656556\/revisions"}],"predecessor-version":[{"id":656568,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/656556\/revisions\/656568"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=656556"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=656556"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=656556"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=656556"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=656556"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=656556"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=656556"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=656556"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=656556"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=656556"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=656556"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=656556"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=656556"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=656556"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=656556"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=656556"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}