{"id":658713,"date":"2020-05-13T12:10:39","date_gmt":"2020-05-13T19:10:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=658713"},"modified":"2020-05-13T12:10:39","modified_gmt":"2020-05-13T19:10:39","slug":"tornado-a-distributed-spatio-textual-stream-processing-system","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/tornado-a-distributed-spatio-textual-stream-processing-system\/","title":{"rendered":"Tornado: A Distributed Spatio-Textual Stream Processing System"},"content":{"rendered":"
The widespread use of location-aware devices together with the increased popularity of micro-blogging applications (e.g., Twitter) led to the creation of large streams of spatio-textual data. In order to serve real-time applications, the processing of these large-scale spatio-textual streams needs to be distributed. However, existing distributed stream processing systems (e.g., Spark and Storm) are not optimized for spatial\/textual content. In this demonstration, we introduce Tornado, a distributed in-memory spatio-textual stream processing server that extends Storm. To efficiently process spatiotextual streams, Tornado introduces a spatio-textual indexing layer to the architecture of Storm. The indexing layer is adaptive, i.e., dynamically re-distributes the processing across the system according to changes in the data distribution and\/or query workload. In addition to keywords, higher-level textual concepts are identified and are semantically matched against spatio-textual queries. Tornado provides data deduplication and fusion to eliminate redundant textual data. We demonstrate a prototype of Tornado running against real Twitter streams, where the users can register continuous or snapshot spatio-textual queries using a map-assisted query-interface.<\/p>\n","protected":false},"excerpt":{"rendered":"
The widespread use of location-aware devices together with the increased popularity of micro-blogging applications (e.g., Twitter) led to the creation of large streams of spatio-textual data. In order to serve real-time applications, the processing of these large-scale spatio-textual streams needs to be distributed. However, existing distributed stream processing systems (e.g., Spark and Storm) are not […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-658713","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-5","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/amgadmadkour.github.io\/files\/papers\/tornadodemo.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Ahmed R. Mahmood","user_id":0,"rest_url":false},{"type":"text","value":"Ahmed M. Aly","user_id":0,"rest_url":false},{"type":"text","value":"Thamir Qadah","user_id":0,"rest_url":false},{"type":"text","value":"Elkindi Rezig","user_id":0,"rest_url":false},{"type":"text","value":"Anas Daghastani","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Amgad Madkour","user_id":39132,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Amgad Madkour"},{"type":"text","value":"Ahmed S. Abdelhamid","user_id":0,"rest_url":false},{"type":"text","value":"Mohamed S. Hassan","user_id":0,"rest_url":false},{"type":"text","value":"Walid G. Aref","user_id":0,"rest_url":false},{"type":"text","value":"Saleh Basalamah","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/658713"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/658713\/revisions"}],"predecessor-version":[{"id":658716,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/658713\/revisions\/658716"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=658713"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=658713"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=658713"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=658713"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=658713"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=658713"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=658713"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=658713"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=658713"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=658713"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=658713"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=658713"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=658713"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=658713"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=658713"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=658713"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}