{"id":664185,"date":"2020-06-03T19:15:52","date_gmt":"2020-06-04T02:15:52","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=664185"},"modified":"2022-06-08T00:48:14","modified_gmt":"2022-06-08T07:48:14","slug":"learning-texture-transformer-network-for-image-super-resolution","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/learning-texture-transformer-network-for-image-super-resolution\/","title":{"rendered":"Learning Texture Transformer Network for Image Super-Resolution"},"content":{"rendered":"

We study on image super-resolution (SR), which aims to recover realistic textures from a low-resolution (LR) image. Recent progress has been made by taking high-resolution images as references (Ref), so that relevant textures can be transferred to LR images. However, existing SR approaches neglect to use attention mechanisms to transfer high-resolution (HR) textures from Ref images, which limits these approaches in challenging cases. In this paper, we propose a novel T<\/strong>exture T<\/strong>ransformer Network for Image S<\/strong>uper-R<\/strong>esolution (TTSR), in which the LR and Ref images are formulated as queries and keys in a transformer, respectively. TTSR consists of four closely-related modules optimized for image generation tasks, including a learnable texture extractor by DNN, a relevance embedding module, a hard-attention module for texture transfer, and a soft-attention module for texture synthesis. Such a design encourages joint feature learning across LR and Ref images, in which deep feature correspondences can be discovered by attention, and thus accurate texture features can be transferred. The proposed texture transformer can be further stacked in a cross-scale way, which enables texture recovery from different levels (e.g., from 1x to 4x magnification). Extensive experiments show that TTSR achieves significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations.<\/p>\n","protected":false},"excerpt":{"rendered":"

We study on image super-resolution (SR), which aims to recover realistic textures from a low-resolution (LR) image. Recent progress has been made by taking high-resolution images as references (Ref), so that relevant textures can be transferred to LR images. However, existing SR approaches neglect to use attention mechanisms to transfer high-resolution (HR) textures from Ref […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-664185","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2006.04139","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/github.com\/researchmm\/TTSR","label_id":"264520","label":0}],"msr_attachments":[{"id":664188,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/06\/Yang_Learning_Texture_Transformer_CVPR_2020_paper.pdf"}],"msr-author-ordering":[{"type":"text","value":"Fuzhi Yang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Huan Yang","user_id":38880,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Huan Yang"},{"type":"edited_text","value":"Jianlong Fu","user_id":32260,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianlong Fu"},{"type":"text","value":"Hongtao Lu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Baining Guo","user_id":31169,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Baining Guo"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[661083],"msr_group":[144916],"msr_project":[733501],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":733501,"post_title":"Image\/Video Transformation","post_name":"image-video-transformation","post_type":"msr-project","post_date":"2021-04-20 21:08:11","post_modified":"2021-05-30 23:12:35","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/image-video-transformation\/","post_excerpt":"Image and video have become the language people use to communicate on the Internet. Multimedia content connects people and appeals to the young. This project aims at deep image and video transformation to generate high-quality image and video content in an automatic way and create more engaging experiences for modern work and life. Our vision is broad and focuses on developing state-of-the-art AI technology for fast, reliable, and cost-effective content creation, communication, and consumption. Our…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/733501"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/664185"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/664185\/revisions"}],"predecessor-version":[{"id":664191,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/664185\/revisions\/664191"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=664185"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=664185"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=664185"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=664185"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=664185"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=664185"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=664185"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=664185"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=664185"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=664185"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=664185"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=664185"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=664185"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=664185"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=664185"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=664185"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}