{"id":665667,"date":"2020-07-07T19:45:01","date_gmt":"2020-07-08T02:45:01","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=665667"},"modified":"2020-10-26T11:42:52","modified_gmt":"2020-10-26T18:42:52","slug":"faster-graph-embeddings-via-coarsening","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/faster-graph-embeddings-via-coarsening\/","title":{"rendered":"Faster Graph Embeddings via Coarsening"},"content":{"rendered":"

Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interested only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on Schur complements, for computing the embedding of the relevant vertices. We prove that these embeddings are preserved exactly by the Schur complement graph that is obtained via Gaussian elimination on the non-relevant vertices. As computing Schur complements is expensive, we give a nearly-linear time algorithm that generates a coarsened graph on the relevant vertices that provably matches the Schur complement in expectation. Our experiments involving prediction tasks on graphs demonstrate that computing embeddings on the coarsened graph, rather than the entire graph, leads to significant time savings without sacrificing accuracy.<\/p>\n","protected":false},"excerpt":{"rendered":"

Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interested only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-665667","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-7-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2007.02817","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Matthew Fahrbach","user_id":0,"rest_url":false},{"type":"text","value":"Gramoz Goranci","user_id":0,"rest_url":false},{"type":"text","value":"Sushant Sachdeva","user_id":0,"rest_url":false},{"type":"text","value":"Richard Peng","user_id":0,"rest_url":false},{"type":"edited_text","value":"Chi Wang","user_id":31406,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chi Wang"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[700999],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":700999,"post_title":"Sublinear Approximation for Large-scale Data Science","post_name":"sublinear-approximation-for-large-scale-data-science","post_type":"msr-project","post_date":"2020-10-24 11:50:50","post_modified":"2020-10-24 12:11:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sublinear-approximation-for-large-scale-data-science\/","post_excerpt":"One challenge in large scale data science is that even linear algorithms can result in large data processing cost and long latency, which limit the interactivity of the system and the productivity of data scientists. This project has an ambitious goal of enabling data science with sublinear complexity, such that the cost grows slowly or independently with the data size. We explore approximation methods for time-consuming tasks in data analytics and machine learning. Our methods…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/700999"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/665667"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/665667\/revisions"}],"predecessor-version":[{"id":665736,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/665667\/revisions\/665736"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=665667"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=665667"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=665667"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=665667"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=665667"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=665667"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=665667"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=665667"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=665667"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=665667"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=665667"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=665667"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=665667"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=665667"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=665667"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=665667"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}