{"id":666507,"date":"2020-06-13T16:35:40","date_gmt":"2020-06-13T23:35:40","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=666507"},"modified":"2020-06-13T16:35:40","modified_gmt":"2020-06-13T23:35:40","slug":"hyper-star-task-aware-hyperparameters-for-deep-networks","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/hyper-star-task-aware-hyperparameters-for-deep-networks\/","title":{"rendered":"Hyper-STAR: Task-Aware Hyperparameters for Deep Networks"},"content":{"rendered":"

While deep neural networks excel in solving visual recognition tasks, they require significant effort to find hyperparameters that make them work optimally. Hyperparameter Optimization (HPO) approaches have automated the process of finding good hyperparameters but they do not adapt to a given task (task-agnostic), making them computationally inefficient. To reduce HPO time, we present HyperSTAR (System for Task Aware Hyperparameter Recommendation), a task-aware method to warm-start HPO for deep neural networks. HyperSTAR ranks and recommends hyperparameters by predicting their performance conditioned on a joint dataset-hyperparameter space. It learns a dataset (task) representation along with the performance predictor directly from raw images in an end-to-end fashion. The recommendations, when integrated with an existing HPO method, make it task-aware and significantly reduce the time to achieve optimal performance. We conduct extensive experiments on 10 publicly available large-scale image classification datasets over two different network architectures, validating that HyperSTAR evaluates 50% less configurations to achieve the best performance compared to existing methods. We further demonstrate that HyperSTAR makes Hyperband (HB) task-aware, achieving the optimal accuracy in just 25% of the budget required by both vanilla HB and Bayesian Optimized HB~(BOHB).<\/p>\n","protected":false},"excerpt":{"rendered":"

While deep neural networks excel in solving visual recognition tasks, they require significant effort to find hyperparameters that make them work optimally. Hyperparameter Optimization (HPO) approaches have automated the process of finding good hyperparameters but they do not adapt to a given task (task-agnostic), making them computationally inefficient. To reduce HPO time, we present HyperSTAR […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-666507","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2005.10524","label_id":"243109","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/06\/Hyper-STAR.pdf","id":"666510","title":"hyper-star","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":666510,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/06\/Hyper-STAR.pdf"}],"msr-author-ordering":[{"type":"text","value":"Gaurav Mittal","user_id":0,"rest_url":false},{"type":"text","value":"Chang Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Nikolaos Karianakis","user_id":37947,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nikolaos Karianakis"},{"type":"user_nicename","value":"Victor Fragoso","user_id":37983,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Victor Fragoso"},{"type":"user_nicename","value":"Mei Chen","user_id":38478,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mei Chen"},{"type":"text","value":"Yun Fu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/666507"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/666507\/revisions"}],"predecessor-version":[{"id":666513,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/666507\/revisions\/666513"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=666507"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=666507"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=666507"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=666507"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=666507"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=666507"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=666507"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=666507"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=666507"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=666507"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=666507"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=666507"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=666507"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=666507"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=666507"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=666507"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}