{"id":670185,"date":"2020-06-28T20:51:32","date_gmt":"2020-06-29T03:51:32","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=670185"},"modified":"2020-06-28T20:51:32","modified_gmt":"2020-06-29T03:51:32","slug":"recparser-a-recursive-semantic-parsing-framework-for-text-to-sql-task","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/recparser-a-recursive-semantic-parsing-framework-for-text-to-sql-task\/","title":{"rendered":"RECPARSER: A Recursive Semantic Parsing Framework for Text-to-SQL Task"},"content":{"rendered":"
Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer.
\nIt decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL query generation problems.
\nFurthermore, we propose a novel Question Decomposer module to explicitly encourage RECPARSER to focus on different components of utterance when predicting SQL queries in different layers. Experiments on Spider dataset show that our approach is more effective compared to the previous works at predicting the nested SQL queries. In addition, we obtain an overall accuracy that is comparable with the state-of-the-art approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"
Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer. It decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-670185","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-7","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/06\/RECPARSER.pdf","id":"670188","title":"recparser","label_id":"243103","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":670188,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/06\/RECPARSER.pdf"}],"msr-author-ordering":[{"type":"text","value":"Yu Zeng","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yan Gao","user_id":38730,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yan Gao"},{"type":"text","value":"Jiaqi Guo","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bei Chen","user_id":36756,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bei Chen"},{"type":"text","value":"Qian Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jian-Guang Lou","user_id":32337,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jian-Guang Lou"},{"type":"text","value":"Fei Teng","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Dongmei Zhang","user_id":31665,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dongmei Zhang"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[578947],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":578947,"post_title":"Natural Language Interface for Data Analytics","post_name":"conversational-data-analytics","post_type":"msr-project","post_date":"2019-04-15 15:23:36","post_modified":"2022-03-22 02:54:11","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/conversational-data-analytics\/","post_excerpt":"In this project, we try to research and develop a conversation technology for data analytics scenarios. By using our technology, given a relational database or a data table, a user can explore the data table and insights from the dataset through natural language conversation. Our system can understand user\u2019s natural language questions and convert the questions into some analysis programs. The programs can be executed on the relational database (or the data table) to obtain…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/578947"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/670185"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/670185\/revisions"}],"predecessor-version":[{"id":670191,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/670185\/revisions\/670191"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=670185"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=670185"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=670185"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=670185"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=670185"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=670185"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=670185"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=670185"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=670185"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=670185"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=670185"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=670185"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=670185"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=670185"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=670185"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=670185"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}