{"id":691908,"date":"2020-09-15T05:43:19","date_gmt":"2020-09-15T12:43:19","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=691908"},"modified":"2020-10-27T09:06:52","modified_gmt":"2020-10-27T16:06:52","slug":"analyzing-information-leakage-of-updates-to-natural-language-models","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/analyzing-information-leakage-of-updates-to-natural-language-models\/","title":{"rendered":"Analyzing Information Leakage of Updates to Natural Language Models"},"content":{"rendered":"

To continuously improve quality and reflect changes in data, machine learning applications have to regularly retrain and update their core models.<\/p>\n

We show that a differential analysis of language model snapshots before and after an update can reveal a surprising amount of detailed information about changes in the training data.<\/p>\n

We propose two new metrics—differential score<\/em> and differential rank<\/em>—for analyzing the leakage due to updates of natural language models. We perform leakage analysis using these metrics across models trained on several different datasets using different methods and configurations.<\/p>\n

We discuss the privacy implications of our findings, propose mitigation strategies and evaluate their effect.<\/p>\n","protected":false},"excerpt":{"rendered":"

To continuously improve quality and reflect changes in data, machine learning applications have to regularly retrain and update their core models. We show that a differential analysis of language model snapshots before and after an update can reveal a surprising amount of detailed information about changes in the training data. We propose two new metrics—differential […]<\/p>\n","protected":false},"featured_media":701458,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-691908","msr-research-item","type-msr-research-item","status-publish","has-post-thumbnail","hentry","msr-research-area-artificial-intelligence","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-11-9","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/09\/ccs20.pdf","id":"691911","title":"ccs20","label_id":"243103","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":691911,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/09\/ccs20.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Santiago Zanella-B\u00e9guelin","user_id":33518,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Santiago Zanella-B\u00e9guelin"},{"type":"user_nicename","value":"Lukas Wutschitz","user_id":38775,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lukas Wutschitz"},{"type":"user_nicename","value":"Shruti Tople","user_id":39003,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shruti Tople"},{"type":"text","value":"Victor Ruehle","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Andrew Paverd","user_id":37902,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andrew Paverd"},{"type":"text","value":"Olga Ohrimenko","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Boris K\u00f6pf","user_id":37857,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Boris K\u00f6pf"},{"type":"user_nicename","value":"Marc Brockschmidt","user_id":32763,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marc Brockschmidt"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[761911,1054512,559983],"msr_project":[648207],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":648207,"post_title":"Confidential AI","post_name":"confidential-ai","post_type":"msr-project","post_date":"2020-05-15 05:46:38","post_modified":"2023-02-15 01:10:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/confidential-ai\/","post_excerpt":"Our goal is to make Azure the most trustworthy cloud platform for AI. The platform we envisage offers confidentiality and integrity against privileged attackers including attacks on the code, data and hardware supply chains, performance close to that offered by GPUs, and programmability of state-of-the-art ML frameworks. The confidential AI platform will enable multiple entities to collaborate and train accurate models using sensitive data, and serve these models with assurance that their data and models…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/648207"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/691908"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/691908\/revisions"}],"predecessor-version":[{"id":701464,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/691908\/revisions\/701464"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/701458"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=691908"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=691908"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=691908"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=691908"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=691908"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=691908"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=691908"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=691908"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=691908"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=691908"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=691908"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=691908"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=691908"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=691908"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=691908"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=691908"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}