{"id":695604,"date":"2020-09-30T23:55:00","date_gmt":"2020-10-01T06:55:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=695604"},"modified":"2020-10-01T00:12:27","modified_gmt":"2020-10-01T07:12:27","slug":"wafer-yield-prediction-using-derived-spatial-variables","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/wafer-yield-prediction-using-derived-spatial-variables\/","title":{"rendered":"Wafer Yield Prediction using Derived Spatial Variables"},"content":{"rendered":"
Unreliable chips tend to form spatial clusters on semiconductor wafers. The spatial patterns of these defects are largely reflected in functional testing results. However, the spatial cluster information of unreliable chips has not been fully used to predict the performance in field use in the literature. This paper proposes a novel wafer yield prediction model that incorporates the spatial clustering information in functional testing. Fused LASSO is first adopted to derive variables based on the spatial distri- bution of defect clusters. Then, a logistic regression model is used to predict the final yield (ratio of chips that remain functional until expected lifetime) with derived spa- tial covariates and functional testing values. The proposed model is evaluated both on real production wafers and in an extensive simulation study. The results show that by explicitly considering the characteristics of defect clusters, our proposed model provides improved performance compared to existing methods. Moreover, the cross-validation experiments prove that our approach is capable of using historical data to predict yield on newly produced wafers.<\/p>\n<\/div>\n<\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"
Unreliable chips tend to form spatial clusters on semiconductor wafers. The spatial patterns of these defects are largely reflected in functional testing results. However, the spatial cluster information of unreliable chips has not been fully used to predict the performance in field use in the literature. This paper proposes a novel wafer yield prediction model […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-695604","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Quality and Reliability Engineering International","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/09\/40.Wafer-Yield-Prediction-using-Derived-Spatial-Variables.pdf","id":"695607","title":"40-wafer-yield-prediction-using-derived-spatial-variables","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":695607,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/09\/40.Wafer-Yield-Prediction-using-Derived-Spatial-Variables.pdf"}],"msr-author-ordering":[{"type":"text","value":"Hang Dong","user_id":0,"rest_url":false},{"type":"text","value":"Nan Chen","user_id":0,"rest_url":false},{"type":"text","value":"Kaibo Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/695604"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/695604\/revisions"}],"predecessor-version":[{"id":695610,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/695604\/revisions\/695610"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=695604"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=695604"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=695604"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=695604"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=695604"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=695604"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=695604"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=695604"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=695604"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=695604"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=695604"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=695604"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=695604"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=695604"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=695604"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=695604"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}