{"id":697000,"date":"2020-10-08T11:30:57","date_gmt":"2020-10-08T18:30:57","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=697000"},"modified":"2020-10-08T11:30:57","modified_gmt":"2020-10-08T18:30:57","slug":"the-moral-risk-in-machine-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-moral-risk-in-machine-learning\/","title":{"rendered":"The moral risk in Machine Learning"},"content":{"rendered":"

Whether we know it or not, we are all living on a new planet: Planet Algorithm. This is a cyberphysical space in which billions of pieces of data are transported at hyperspeed and are analyzed by increasingly sophisticated artificial intelligence (AI) systems. These use algorithms to generate learning and self-learning processes that are making an exponential impact on industry, trade, services, and multiple aspects of our lives together. In this INTAL\/IDB report, over 40 high-profile international experts analyze the risks and opportunities come with the use of intelligent machines in areas that have serious implications for Latin America\u2019s productive profile and global role. These range from the possibility of predicting trade negotiation outcomes, commodity prices, and consumer trends to the development of algorithms for use in factories, personalized medicine, extended education, infrastructure prototyping, autonomous ecotransportation, precision agriculture, energy consumption, the legal system, and macroeconomic analysis. They also explore the ethical and equality-related challenges these transformations are posing. We are witnessing the rise of a technology that is becoming a new factor of production. Artificial intelligence, if guided by a thoughtful, up-to-date, humanist vision, could contribute to consolidating a predictive and inclusiveform of regional integration that benefits all Latin Americans.<\/p>\n","protected":false},"excerpt":{"rendered":"

Whether we know it or not, we are all living on a new planet: Planet Algorithm. This is a cyberphysical space in which billions of pieces of data are transported at hyperspeed and are analyzed by increasingly sophisticated artificial intelligence (AI) systems. These use algorithms to generate learning and self-learning processes that are making an […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13568],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-697000","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-technology-for-emerging-markets","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-7","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Integration and Trade Journal","msr_volume":"22","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"44","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"http:\/\/dx.doi.org\/10.18235\/0001287","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/publications.iadb.org\/en\/integration-and-trade-journal-volume-22-no-44-july-2018-planet-algorithm-artificial-intelligence","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/publications.iadb.org\/publications\/english\/document\/Integration_and_Trade_Journal_Volume_22_No._44_July_2018_Planet_Algorithm_Artificial_Intelligence_for_a_Predictive_and_Inclusive_form_of_Integration_in_Latin_America.pdf","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Juan M. Lavista Ferres","user_id":39552,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Juan M. Lavista Ferres"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[696544],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/697000"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/697000\/revisions"}],"predecessor-version":[{"id":697003,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/697000\/revisions\/697003"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=697000"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=697000"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=697000"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=697000"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=697000"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=697000"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=697000"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=697000"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=697000"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=697000"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=697000"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=697000"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=697000"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=697000"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=697000"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=697000"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}