{"id":698098,"date":"2020-10-14T12:38:45","date_gmt":"2020-10-14T19:38:45","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=698098"},"modified":"2023-03-15T10:26:10","modified_gmt":"2023-03-15T17:26:10","slug":"adaptive-self-training-for-few-shot-neural-sequence-labeling","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/adaptive-self-training-for-few-shot-neural-sequence-labeling\/","title":{"rendered":"Meta Self-training for Few-shot Neural Sequence Labeling"},"content":{"rendered":"
Neural sequence labeling is widely adopted for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER) and slot tagging for dialog systems and semantic parsing. Recent advances with large-scale pre-trained language models have shown remarkable success in these tasks when fine-tuned on large amounts of task-specific labeled data. However, obtaining such large-scale labeled training data is not only costly, but also may not be feasible in many sensitive user applications due to data access and privacy constraints. This is exacerbated for sequence labeling tasks requiring such annotations at token-level. In this work, we develop techniques to address the label scarcity challenge for neural sequence labeling models. Specifically, we propose a meta self-training framework which leverages very few manually annotated labels for training neural sequence models. While self-training serves as an effective mechanism to learn from large amounts of unlabeled data via iterative knowledge exchange \u2013 meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo labels. Extensive experiments on six benchmark datasets including two for massive multilingual NER and four slot tagging datasets for task-oriented dialog systems demonstrate the effectiveness of our method. With only 10 labeled examples for each class in each task, the proposed method achieves 10% improvement over state-of-the-art methods demonstrating its effectiveness for limited training labels regime.<\/p>\n","protected":false},"excerpt":{"rendered":"
Neural sequence labeling is widely adopted for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER) and slot tagging for dialog systems and semantic parsing. Recent advances with large-scale pre-trained language models have shown remarkable success in these tasks when fine-tuned on large amounts of task-specific labeled data. However, obtaining such large-scale […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-698098","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-8-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/10\/MetaST_Few_shot_KDD_2021.pdf","id":"747109","title":"metast_few_shot_kdd_2021","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":747109,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/05\/MetaST_Few_shot_KDD_2021.pdf"}],"msr-author-ordering":[{"type":"text","value":"Yaqing Wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Subhabrata (Subho) Mukherjee","user_id":38308,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Subhabrata (Subho) Mukherjee"},{"type":"text","value":"Haoda Chu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yuancheng Tu","user_id":42663,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yuancheng Tu"},{"type":"text","value":"Ming Wu","user_id":0,"rest_url":false},{"type":"text","value":"Jing Gao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ahmed H. Awadallah","user_id":31979,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ahmed H. Awadallah"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[755461],"msr_group":[392600,644373,702211],"msr_project":[675762],"publication":[],"video":[],"download":[785155],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":675762,"post_title":"Few-shot Learning","post_name":"xtreme-learning-with-few-labels","post_type":"msr-project","post_date":"2020-07-15 20:35:24","post_modified":"2021-06-23 18:07:32","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/xtreme-learning-with-few-labels\/","post_excerpt":"Deep neural networks including pre-trained language models like BERT, Turing-NLG and GPT-3 require thousands of labeled training examples to obtain state-of-the-art performance for downstream tasks and applications. Such large number of labeled examples are difficult and expensive to acquire in practice -- as we scale these models to hundreds of different languages, thousands of different tasks and domains, as well as for compliant reasons while dealing with sensitive user data. In this project, we develop…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/675762"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/698098"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/698098\/revisions"}],"predecessor-version":[{"id":747112,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/698098\/revisions\/747112"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=698098"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=698098"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=698098"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=698098"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=698098"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=698098"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=698098"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=698098"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=698098"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=698098"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=698098"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=698098"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=698098"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=698098"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=698098"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=698098"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}