{"id":700309,"date":"2020-10-22T20:23:38","date_gmt":"2020-10-23T03:23:38","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=700309"},"modified":"2022-10-20T05:14:31","modified_gmt":"2022-10-20T12:14:31","slug":"hived-sharing-a-gpu-cluster-for-deep-learning-with-guarantees","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/hived-sharing-a-gpu-cluster-for-deep-learning-with-guarantees\/","title":{"rendered":"HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees"},"content":{"rendered":"
Deep learning training on a shared GPU cluster is becoming a common practice. However, we observe severe sharing anomaly in production multi-tenant clusters where jobs in some tenants experience worse queuing delay than they would have in a private cluster with their allocated shares of GPUs. This is because tenants use quota, the number of GPUs, to reserve resources, whereas deep learning jobs often use GPUs with a desirable GPU affinity, which quota cannot guarantee. HiveD is the first framework to share a GPU cluster safely, so that such anomaly would never happen by design. In HiveD, each tenant reserves resources through a Virtual Private Cluster (VC), defined in terms of multi-level cell structures corresponding to different levels of GPU affinity in a cluster. This design allows HiveD to incorporate any existing schedulers within each VC to achieve their respective design goals while sharing the cluster safely. HiveD develops an elegant buddy cell allocation algorithm to ensure sharing safety by efficiently managing the dynamic binding of cells from VCs to those in a physical cluster. A straight forward extension of buddy cell allocation can further support low-priority jobs to scavenge the unused GPU resources to improve cluster utilization. With a combination of real deployment and trace-driven simulation, we show that: (i) sharing anomaly exists in three state-of-the-art deep learning schedulers, incurring extra queuing delay of up to 1,000 minutes; (ii) HiveD can incorporate these schedulers and eliminate the sharing anomaly in all of them, achieving separation of concerns that allows the schedulers to focus on their own scheduling goals without violating sharing safety.<\/p>\n","protected":false},"excerpt":{"rendered":"
Deep learning training on a shared GPU cluster is becoming a common practice. However, we observe severe sharing anomaly in production multi-tenant clusters where jobs in some tenants experience worse queuing delay than they would have in a private cluster with their allocated shares of GPUs. This is because tenants use quota, the number of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[263953],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-700309","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/osdi20\/presentation\/zhao-hanyu","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Hanyu Zhao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Zhenhua Han","user_id":39745,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhenhua Han"},{"type":"text","value":"Zhi Yang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Quanlu Zhang","user_id":36996,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Quanlu Zhang"},{"type":"user_nicename","value":"Fan Yang","user_id":31782,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Fan Yang"},{"type":"user_nicename","value":"Lidong Zhou","user_id":32673,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lidong Zhou"},{"type":"user_nicename","value":"Mao Yang","user_id":32798,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mao Yang"},{"type":"text","value":"Yuqi Wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yifan Xiong","user_id":40702,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yifan Xiong"},{"type":"text","value":"Bin Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[881388,920469,510017,815140],"msr_project":[507584],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":507584,"post_title":"Platform for AI (aka. OpenPAI)","post_name":"platform-for-ai-aka-openpai","post_type":"msr-project","post_date":"2018-09-25 23:34:32","post_modified":"2018-09-26 00:07:04","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/platform-for-ai-aka-openpai\/","post_excerpt":"Platform for AI is an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale. The platform incorporates the mature design that has a proven track record in Microsoft's large-scale production environment. Support on-premises and easy to deploy OpenPAI is a full stack solution. OpenPAI not only supports on-premises, hybrid, or public Cloud deployment but also supports…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/507584"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700309"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700309\/revisions"}],"predecessor-version":[{"id":858297,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700309\/revisions\/858297"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=700309"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=700309"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=700309"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=700309"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=700309"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=700309"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=700309"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=700309"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=700309"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=700309"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=700309"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=700309"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=700309"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=700309"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=700309"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=700309"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}