{"id":700966,"date":"2020-10-24T00:58:34","date_gmt":"2020-10-24T07:58:34","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=700966"},"modified":"2022-01-28T11:38:24","modified_gmt":"2022-01-28T19:38:24","slug":"modulo-drive-by-sensing-at-city-scale-on-the-cheap","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/modulo-drive-by-sensing-at-city-scale-on-the-cheap\/","title":{"rendered":"Modulo: Drive-by Sensing at City-scale on the Cheap"},"content":{"rendered":"

Ambient air pollution in urban areas is a significant health hazard, with over 4.2 million deaths annually attributed to it. A crucial step in tackling these challenge is to measure air quality at a fine spatiotemporal granularity. A promising approach for several smart city projects, called drive-by sensing, is to leverage vehicles retrofitted with different sensors (pollution monitors, etc.) that can provide the desired spatiotemporal coverage at a fraction of the cost. However, deploying a drive-by sensing network at a city-scale to optimally select vehicles from a large fleet is still unexplored. In this paper, we propose Modulo — a system to bootstrap drive-by sensing deployment by taking into consideration a variety of aspects such as spatiotemporal coverage, budget constraints. Modulo is well-suited to satisfy unique deployment constraints such as colocations with other sensors (needed for gas and PM sensor calibration), etc. We compare Modulo with two baseline algorithms on real-world taxi and bus datasets. Modulo significantly outperforms the baselines when a fleet comprises of both taxis and fixed-route vehicles such as public transport buses. Finally, we present a real-world case study that uses Modulo to select vehicles for an air pollution sensing application.<\/p>\n","protected":false},"excerpt":{"rendered":"

Ambient air pollution in urban areas is a significant health hazard, with over 4.2 million deaths annually attributed to it. A crucial step in tackling these challenge is to measure air quality at a fine spatiotemporal granularity. A promising approach for several smart city projects, called drive-by sensing, is to leverage vehicles retrofitted with different […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[198583,13568],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[258304,249589,246691,255226,250846,248131,247564,258301,248224,258307],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-700966","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-ecology-environment","msr-research-area-technology-for-emerging-markets","msr-locale-en_us","msr-field-of-study-air-quality-index","msr-field-of-study-baseline-configuration-management","msr-field-of-study-computer-science","msr-field-of-study-leverage-statistics","msr-field-of-study-modulo","msr-field-of-study-public-transport","msr-field-of-study-real-time-computing","msr-field-of-study-smart-city","msr-field-of-study-software-deployment","msr-field-of-study-taxis"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-6-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM","msr_how_published":"","msr_notes":"","msr_highlight_text":"Best Paper Award","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/10\/Modulo_-Drive-by-Sensing-at-City-scale-on-the-Cheap.pdf","label_id":"243132","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/3378393.3402275","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1910.09155","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":700969,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/10\/Modulo_-Drive-by-Sensing-at-City-scale-on-the-Cheap.pdf"}],"msr-author-ordering":[{"type":"guest","value":"dhruv-agarwal-2","user_id":791693,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dhruv-agarwal-2"},{"type":"user_nicename","value":"Srinivasan Iyengar","user_id":41221,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Srinivasan Iyengar"},{"type":"user_nicename","value":"Manohar Swaminathan","user_id":35356,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Manohar Swaminathan"},{"type":"text","value":"Eash Sharma","user_id":0,"rest_url":false},{"type":"text","value":"Ashish Raj","user_id":0,"rest_url":false},{"type":"text","value":"Aadithya Hatwar","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144784,602169,768895],"msr_project":[757810],"publication":[],"video":[],"download":[785689],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":757810,"post_title":"Air Pollution Sensing and Causal Modelling","post_name":"air-pollution-sensing-and-causal-modelling","post_type":"msr-project","post_date":"2021-09-13 13:43:25","post_modified":"2022-02-08 09:59:20","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/air-pollution-sensing-and-causal-modelling\/","post_excerpt":"Through our drive-by air pollution sensing research project, we are enabling cost-efficient collection of granular spatiotemporal pollution data through drive-by sensing.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/757810"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700966"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700966\/revisions"}],"predecessor-version":[{"id":763705,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/700966\/revisions\/763705"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=700966"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=700966"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=700966"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=700966"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=700966"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=700966"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=700966"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=700966"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=700966"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=700966"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=700966"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=700966"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=700966"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=700966"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=700966"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=700966"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}