{"id":704677,"date":"2020-11-10T00:30:39","date_gmt":"2020-11-10T08:30:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=704677"},"modified":"2020-11-10T00:30:39","modified_gmt":"2020-11-10T08:30:39","slug":"chartem-reviving-chart-images-with-data-embedding","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/chartem-reviving-chart-images-with-data-embedding\/","title":{"rendered":"Chartem: Reviving Chart Images with Data Embedding"},"content":{"rendered":"
In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.<\/p>\n","protected":false},"excerpt":{"rendered":"
In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563,13554],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-704677","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Transactions on Visualization and Computer Graphics","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/11\/f-info-1149.pdf","id":"704680","title":"f-info-1149","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":704680,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2020\/11\/f-info-1149.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jiayun Fu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bin Zhu","user_id":31240,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bin Zhu"},{"type":"user_nicename","value":"Weiwei Cui","user_id":34808,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Weiwei Cui"},{"type":"user_nicename","value":"Song Ge","user_id":33692,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Song Ge"},{"type":"user_nicename","value":"Yun Wang","user_id":37827,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yun Wang"},{"type":"user_nicename","value":"Haidong Zhang","user_id":31953,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Haidong Zhang"},{"type":"user_nicename","value":"Ray Huang","user_id":33358,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ray Huang"},{"type":"text","value":"Yuanyuan Tang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Dongmei Zhang","user_id":31665,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dongmei Zhang"},{"type":"text","value":"Xiaojing Ma","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[714577],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/704677"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/704677\/revisions"}],"predecessor-version":[{"id":704683,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/704677\/revisions\/704683"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=704677"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=704677"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=704677"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=704677"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=704677"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=704677"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=704677"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=704677"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=704677"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=704677"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=704677"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=704677"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=704677"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=704677"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=704677"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=704677"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}